Local Differential Privacy (LDP) has been widely recognized as a powerful tool for providing a strong theoretical guarantee of data privacy to data contributors against an untrusted data collector. Under a typical LDP scheme, each data contributor independently randomly perturbs their data before submitting them to the data collector, which in turn infers valuable statistics about the original data from received perturbed data. Common to existing LDP mechanisms is an inherent trade-off between the level of privacy protection and data utility in the sense that strong data privacy often comes at the cost of reduced data utility. Frequency estimation based on Randomized Response (RR) is a fundamental building block of many LDP mechanisms. In this paper, we propose a novel Joint Randomized Response (JRR) mechanism based on correlated data perturbations to achieve locally differentially private frequency estimation. JRR divides data contributors into disjoint groups of two members and lets those in the same group jointly perturb their binary data to improve frequency-estimation accuracy and achieve the same level of data privacy by hiding the group membership information in contrast to the classical RR mechanism. Theoretical analysis and detailed simulation studies using both real and synthetic datasets show that JRR achieves the same level of data privacy as the classical RR mechanism while improving the frequency-estimation accuracy in the overwhelming majority of the cases by up to two orders of magnitude.
more »
« less
Estimating Numerical Distributions under Local Differential Privacy
When collecting information, local differential privacy (LDP) relieves the concern of privacy leakage from users' perspective, as user's private information is randomized before sent to the aggregator. We study the problem of recovering the distribution over a numerical domain while satisfying LDP. While one can discretize a numerical domain and then apply the protocols developed for categorical domains, we show that taking advantage of the numerical nature of the domain results in better trade-off of privacy and utility. We introduce a new reporting mechanism, called the square wave (SW) mechanism, which exploits the numerical nature in reporting. We also develop an Expectation Maximization with Smoothing (EMS) algorithm, which is applied to aggregated histograms from the SW mechanism to estimate the original distributions. Extensive experiments demonstrate that our proposed approach, SW with EMS, consistently outperforms other methods in a variety of utility metrics.
more »
« less
- Award ID(s):
- 1640374
- PAR ID:
- 10194804
- Date Published:
- Journal Name:
- SIGMOD '20: Proceedings of the 2020 International Conference on Management of Data
- Page Range / eLocation ID:
- 621 to 635
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Top-k frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-k items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy. In this paper, we present a novel framework HG-LDP to achieve accurate Top-k item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior accuracy-privacy-memory efficiency tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior accuracy-privacy-memory efficiency tradeoff, saving 2300× memory over baseline methods when the item domain size is 41,270. Our code is anonymously open-sourced via the link.more » « less
-
When collecting information, local differential privacy (LDP) alleviates privacy concerns of users because their private information is randomized before being sent it to the central aggregator. LDP imposes large amount of noise as each user executes the randomization independently. To address this issue, recent work introduced an intermediate server with the assumption that this intermediate server does not collude with the aggregator. Under this assumption, less noise can be added to achieve the same privacy guarantee as LDP, thus improving utility for the data collection task. This paper investigates this multiple-party setting of LDP. We analyze the system model and identify potential adversaries. We then make two improvements: a new algorithm that achieves a better privacy-utility tradeoff; and a novel protocol that provides better protection against various attacks. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method.more » « less
-
null (Ed.)Spam phone calls have been rapidly growing from nuisance to an increasingly effective scam delivery tool. To counter this increasingly successful attack vector, a number of commercial smartphone apps that promise to block spam phone calls have appeared on app stores, and are now used by hundreds of thousands or even millions of users. However, following a business model similar to some online social network services, these apps often collect call records or other potentially sensitive information from users’ phones with little or no formal privacy guarantees. In this paper, we study whether it is possible to build a practical collaborative phone blacklisting system that makes use of local differential privacy (LDP) mechanisms to provide clear privacy guarantees. We analyze the challenges and trade-offs related to using LDP, evaluate our LDP-based system on real-world user-reported call records collected by the FTC, and show that it is possible to learn a phone blacklist using a reasonable overall privacy budget and at the same time preserve users’ privacy while maintaining utility for the learned blacklist.more » « less
-
In recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy because of adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with unknown nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: central differential privacy (CDP) and local differential privacy (LDP), which is proved to be stronger than CDP in many cases. We develop two algorithms that make pricing decisions and learn the unknown demand on the fly while satisfying the CDP and LDP guarantee, respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most [Formula: see text]. Here, the parameter T denotes the length of the time horizon, d is the dimension of the personalized information vector, and the key parameter [Formula: see text] measures the strength of privacy (smaller ε indicates a stronger privacy protection). Conversely, for the algorithm with LDP guarantee, its regret is proved to be at most [Formula: see text], which is near optimal as we prove a lower bound of [Formula: see text] for any algorithm with LDP guarantee.more » « less
An official website of the United States government

