An asteroid impact in the Yucatán Peninsula set off a sequence of events that led to the Cretaceous–Paleogene (K–Pg) mass extinction of 76% species, including the nonavian dinosaurs. The impact hit a carbonate platform and released sulfate aerosols and dust into Earth’s upper atmosphere, which cooled and darkened the planet—a scenario known as an impact winter. Organic burn markers are observed in K–Pg boundary records globally, but their source is debated. If some were derived from sedimentary carbon, and not solely wildfires, it implies soot from the target rock also contributed to the impact winter. Characteristics of polycyclic aromatic hydrocarbons (PAHs) in the Chicxulub crater sediments and at two deep ocean sites indicate a fossil carbon source that experienced rapid heating, consistent with organic matter ejected during the formation of the crater. Furthermore, PAH size distributions proximal and distal to the crater indicate the ejected carbon was dispersed globally by atmospheric processes. Molecular and charcoal evidence indicates wildfires were also present but more delayed and protracted and likely played a less acute role in biotic extinctions than previously suggested. Based on stratigraphy near the crater, between 7.5 × 1014and 2.5 × 1015g of black carbon was released from the target more »
- Award ID(s):
- 1737351
- Publication Date:
- NSF-PAR ID:
- 10195180
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 41
- Page Range or eLocation-ID:
- p. 25327-25334
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Chicxulub impact crater, on the Yucatán Peninsula of México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earthmore »
-
The Chicxulub impact crater, México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and themore »
-
The Chicxulub impact crater in Mexico is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic “peak ring.” Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets andmore »
-
Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)–International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in meltmore »
-
The Chicxulub crater, Mexico, is the site of the asteroid impact that led to the end-Cretaceous mass extinction. While impact events are known to be able to cause severe disruption to surface-dwelling organisms, the effects of such catastrophic perturbations on the deep biosphere are not known. Deep ocean drilling into the peak ring of the Chicxulub impact crater (IODP expedition 364) in 2016 allowed us to study the modern deep biosphere within the (a) high-porosity melt-bearing impact breccia/suevite (617-740 mbsf) emplaced within a day or so of the Cenozoic, (b) the overlying low porosity post-impact marine Cenozoic carbonates (504-617mbsf), andmore »