skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clarifying the quantum mechanical origin of the covalent chemical bond
Abstract Lowering of the electron kinetic energy (KE) upon initial encounter of radical fragments has long been cited as the primary origin of the covalent chemical bond based on Ruedenberg’s pioneering analysis of H$${}_{2}^{+}$$ 2 + and H2and presumed generalization to other bonds. This work reports KE changes during the initial encounter corresponding to bond formation for a range of different bonds; the results demand a re-evaluation of the role of the KE. Bonds between heavier elements, such as H3C–CH3, F–F, H3C–OH, H3C–SiH3, and F–SiF3behave in the opposite way to H$${}_{2}^{+}$$ 2 + and H2, with KE often increasing on bringing radical fragments together (though the total energy change is substantially stabilizing). The origin of this difference is Pauli repulsion between the electrons forming the bond and core electrons. These results highlight the fundamental role of constructive quantum interference (or resonance) as the origin of chemical bonding. Differences between the interfering states distinguish one type of bond from another.  more » « less
Award ID(s):
1955643
PAR ID:
10195226
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  2. Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible. 
    more » « less
  3. Abstract Consider two half-spaces$$H_1^+$$ H 1 + and$$H_2^+$$ H 2 + in$${\mathbb {R}}^{d+1}$$ R d + 1 whose bounding hyperplanes$$H_1$$ H 1 and$$H_2$$ H 2 are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ S 2 , + d : = S d H 1 + H 2 + is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ S d , which contains a great subsphere of dimension$$d-2$$ d - 2 and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ log n . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere. 
    more » « less
  4. A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ B s 0 D s K ± decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ A f Γ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ A f ¯ Γ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ S f ¯ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ B s 0 mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ γ = 81 11 + 12
    more » « less
  5. Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ K 0 = 46.9 GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ K 0 = 4 for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ V 0 = 322.2  Å3$$,$$ , $${K}_{0}=24.8$$ K 0 = 24.8 GPa and$${K}_{0}^{\prime}=4.0$$ K 0 = 4.0 using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure. 
    more » « less