skip to main content


Title: Selecting Flow Optimal System Parameters for Automated Driving Systems
Driver assist features such as adaptive cruise control (ACC) and highway assistants are becoming increasingly prevalent on commercially available vehicles. These systems are typically designed for safety and rider comfort. However, these systems are often not designed with the quality of the overall traffic flow in mind. For such a system to be beneficial to the traffic flow, it must be string stable and minimize the inter-vehicle spacing to maximize throughput, while still being safe. We propose a methodology to select autonomous driving system parameters that are both safe and string stable using the existing control framework already implemented on commercially available ACC vehicles. Optimal parameter values are selected via model-based optimization for an example highway assistant controller with path planning.  more » « less
Award ID(s):
1743772
NSF-PAR ID:
10195261
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Page Range / eLocation ID:
3776 to 3781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones. 
    more » « less
  2. The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected. 
    more » « less
  3. The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC. 
    more » « less
  4. null (Ed.)
    Given the aging infrastructure and the anticipated growing number of highway work zones in the U.S.A., it is important to investigate work zone merge control, which is critical for improving work zone safety and capacity. This paper proposes and evaluates a novel highway work zone merge control strategy based on cooperative driving behavior enabled by artificial intelligence. The proposed method assumes that all vehicles are fully automated, connected, and cooperative. It inserts two metering zones in the open lane to make space for merging vehicles in the closed lane. In addition, each vehicle in the closed lane learns how to adjust its longitudinal position optimally to find a safe gap in the open lane using an off-policy soft actor critic reinforcement learning (RL) algorithm, considering its surrounding traffic conditions. The learning results are captured in convolutional neural networks and used to control individual vehicles in the testing phase. By adding the metering zones and taking the locations, speeds, and accelerations of surrounding vehicles into account, cooperation among vehicles is implicitly considered. This RL-based model is trained and evaluated using a microscopic traffic simulator. The results show that this cooperative RL-based merge control significantly outperforms popular strategies such as late merge and early merge in terms of both mobility and safety measures. It also performs better than a strategy assuming all vehicles are equipped with cooperative adaptive cruise control. 
    more » « less
  5. Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for cooperative driving automation with combined connectivity and automation technologies to improve string stability. This study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stability for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehicles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a minimum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addition, the constant time headway and the length of control time interval had positive correlation with stability, but the control parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case. 
    more » « less