skip to main content


Title: Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.  more » « less
Award ID(s):
1709564
NSF-PAR ID:
10195404
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Molecules
Volume:
25
Issue:
19
ISSN:
1420-3049
Page Range / eLocation ID:
4477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    1,2,3‐Trisubstituted donor–acceptor cyclopropenes (DACPs) generated in situ from enoldiazo compounds react with nucleophiles to form α‐substituted succinic acid derivatives in high yields. Initial dirhodium(II) carboxylate catalysis rapidly converts enoldiazo‐acetates or ‐acetamides to DACPs that undergo catalyst‐free Favorskii ring opening with amines, and also with anilines, alcohols, and thiols, when facilitated by catalytic amounts of 4‐dimethylaminopyridine (DMAP). This methodology provides easy access to mixed esters and amides of monosubstituted succinic acids, including derivatives of naturally occurring compounds. It also affords dihydrazide, dihydroxamic acid, and diamide derivatives, as well as α‐substituted tetrahydropyridazine‐3,6‐diones in high yields. Attempts to generate optically enriched DACPs were not successful because their populations having theRandSconfigurations formed with a chiral dirhodium catalyst are quite similar, and the loss of enantiocontrol likely originates from the DACP ring forming step which is reversible with its intermediate metal carbene.

     
    more » « less
  2. null (Ed.)
    Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production. 
    more » « less
  3. Isoprene (C5H8) is the largest non-methane volatile organic compound emitted into the atmosphere. Isoprene reacts rapidly with ambient hydroxyl radicals (OH) and subsequent addition of O2 results in the formation alkyl peroxy (RO2) radicals. The fate of the initially formed RO2 radicals has been the focus of continuing theoretical and experimental research. Under pristine conditions where bimolecular reactions of RO2 are limited, the thermodynamically favored RO2 undergoes an intramolecular H-shift followed by reaction with O2 and elimination of HO2 to yield 4-hydroperoxy aldehyde (4-HPALD, C5H8O3), predicted to account for up to 13% of first-generation isoprene photochemical oxidation products. Mass spectrometric evidence has been reported for 4-HPALD, but lack of an authentic standard has precluded definitive confirmation of both the structure of 4-HPALD and its origin as a first-generation product of OH oxidation of isoprene. We report the synthesis and characterization of 4-HPALD and establish that it is a major product of isoprene oxidation. Synthetic 4-HPALD is isolated as the peroxyhemiacetal. As expected for the 4-hydroperoxy aldehyde, 1H NMR spectra show no evidence for equilibration with the carbonyl form, even in protic solvents, and gas-phase chemical analysis by CIMS also shows only a single form. OH oxidation of isoprene in an oxidation flow reactor coupled to an ion mobility source with an HR-CIMS detector unequivocally demonstrates 4-HPALD (and likely also 1-HPALD) as isoprene oxidation products. Although HPALDs have been discounted as significant contributors to SOA, oxidation of 4-HPALD in a potential aerosol mass (PAM) reactor in the presence of ozone and OH indicates 4-HPALD rapidly undergoes autooxidation reactions forming low-volatility particulate products. We have confirmed highly oxygenated compounds with compositions C5H8O6 and C5H10O6 likely from OH oxidation, and C5H10O7 and C5H10O8 compounds likely products of ozonolysis. The PAM oxidation experiment further demonstrates that the highly oxygenated, low-volatility products efficiently nucleate particles. 
    more » « less
  4. Catalysis using earth abundant metals is an important goal due to the relative scarcity and expense of precious metal catalysts. It would be even more beneficial to use earth abundant catalysts for the synthesis of common pharmaceutical structural motifs such as pyrrolidine and pyridine. Thus, developing titanium catalysts for asymmetric ring closing hydroamination is a valuable goal. In this work, four sterically encumbered chiral sulfonamides derived from naturally occurring amino acids were prepared. These compounds undergo protonolysis reactions with Ti(NMe 2 ) 4 or Ta(NMe 2 ) 5 to give monomeric complexes as determined by both DOSY NMR and X-ray crystallography. The resulting complexes are active for the ring closing hydroamination hepta-4,5-dienylamine to give a mixture of tetrahydropyridine and pyrrolidine products. However, the titanium complexes convert 6-methylhepta-4,5-dienylamine exclusively to 2-(2-methylpropenyl)pyrrolidine in higher enantioselectivity than those previously reported, with enantiomeric excesses ranging from 18-24%. The corresponding tantalum complexes were more selective with enantiomeric excesses ranging from 33-39%. 
    more » « less
  5. Abstract

    Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.

     
    more » « less