Abstract 1,2,3‐Trisubstituted donor–acceptor cyclopropenes (DACPs) generated in situ from enoldiazo compounds react with nucleophiles to form α‐substituted succinic acid derivatives in high yields. Initial dirhodium(II) carboxylate catalysis rapidly converts enoldiazo‐acetates or ‐acetamides to DACPs that undergo catalyst‐free Favorskii ring opening with amines, and also with anilines, alcohols, and thiols, when facilitated by catalytic amounts of 4‐dimethylaminopyridine (DMAP). This methodology provides easy access to mixed esters and amides of monosubstituted succinic acids, including derivatives of naturally occurring compounds. It also affords dihydrazide, dihydroxamic acid, and diamide derivatives, as well as α‐substituted tetrahydropyridazine‐3,6‐diones in high yields. Attempts to generate optically enriched DACPs were not successful because their populations having theRandSconfigurations formed with a chiral dirhodium catalyst are quite similar, and the loss of enantiocontrol likely originates from the DACP ring forming step which is reversible with its intermediate metal carbene.
more »
« less
Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
more »
« less
- Award ID(s):
- 1709564
- PAR ID:
- 10195404
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 25
- Issue:
- 19
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 4477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production.more » « less
-
Abstract Nonstandard amino acids (nsAAs) that arel‐phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date, these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5′‐phosphate (PLP)‐dependent enzymes, specifically anl‐threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, toward substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one‐pot biocatalytic cascade that achieves high‐yield synthesis of 18 diversel‐phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate the addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis ofl‐phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate‐based route for preparative‐scale synthesis of 4‐formyl‐l‐phenylalanine, a nsAA with a bio‐orthogonal handle that is not readily market‐accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing costs and democratize synthesis for many valuable nsAAs.more » « less
-
Catalysis using earth abundant metals is an important goal due to the relative scarcity and expense of precious metal catalysts. It would be even more beneficial to use earth abundant catalysts for the synthesis of common pharmaceutical structural motifs such as pyrrolidine and pyridine. Thus, developing titanium catalysts for asymmetric ring closing hydroamination is a valuable goal. In this work, four sterically encumbered chiral sulfonamides derived from naturally occurring amino acids were prepared. These compounds undergo protonolysis reactions with Ti(NMe 2 ) 4 or Ta(NMe 2 ) 5 to give monomeric complexes as determined by both DOSY NMR and X-ray crystallography. The resulting complexes are active for the ring closing hydroamination hepta-4,5-dienylamine to give a mixture of tetrahydropyridine and pyrrolidine products. However, the titanium complexes convert 6-methylhepta-4,5-dienylamine exclusively to 2-(2-methylpropenyl)pyrrolidine in higher enantioselectivity than those previously reported, with enantiomeric excesses ranging from 18-24%. The corresponding tantalum complexes were more selective with enantiomeric excesses ranging from 33-39%.more » « less
-
null (Ed.)Studies have previously shown that anthracene and naphthalene derivatives serve as compounds for trapping and chemically generating singlet molecular oxygen [O 2 ( 1 Δ g )], respectively. Simple and efficient synthetic routes to anthracene and naphthalene derivatives are needed, for improved capture and release of O 2 ( 1 Δ g ) in cellular environments. Because of this need, we have synthesized a dihydroxypropyl amide naphthlene endoperoxide as a O 2 ( 1 Δ g ) donor, as well as five anthracene derivatives as O 2 ( 1 Δ g ) acceptor. The anthracene derivatives bear dihydroxypropyl amide, ester, and sulfonate ion end groups connected to 9,10-positions by way of unsaturated (vinyl) and saturated (ethyl) bridging groups. Heck reactions were found to yield these six compounds in easy-to-carry out 3-step reactions in yields of 50–76%. Preliminary results point to the potential of the anthracene compounds to serve as O 2 ( 1 Δ g ) acceptors and would be amenable for future use in biological systems to expand the understanding of O 2 ( 1 Δ g ) in biochemistry.more » « less
An official website of the United States government

