skip to main content


Title: Electromagnetic Thermal Energy Transfer in Nanoparticle Assemblies Below Diffraction Limit
Abstract Fabrication of micro- and nanoscale electronic components has become increasingly demanding due to device and interconnect scaling combined with advanced packaging and assembly for electronic, aerospace, and medical applications. Recent advances in additive manufacturing have made it possible to fabricate microscale, 3D interconnect structures but heat transfer during the fabrication process is one of the most important phenomena influencing the reliable manufacturing of these interconnect structures. In this study, optical absorption and scattering by three-dimensional (3D) nanoparticle packings are investigated to gain insight into micro/nano heat transport within the nanoparticles. Because drying of colloidal solutions creates different configurations of nanoparticles, the plasmonic coupling in three different copper nanoparticle packing configurations was investigated: simple cubic (SC), face-centered cubic (FCC), and hexagonal close packing (HCP). Single-scatter albedo (ω) was analyzed as a function of nanoparticle size, packing density, and configuration to assess effect for thermo-optical properties and plasmonic coupling of the Cu nanoparticles within the nanoparticle packings. This analysis provides insight into plasmonically enhanced absorption in copper nanoparticle particles and its consequences for laser heating of nanoparticle assemblies.  more » « less
Award ID(s):
1728313
PAR ID:
10195411
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Thermal Science and Engineering Applications
Volume:
13
Issue:
2
ISSN:
1948-5085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanoparticle heating due to laser irradiation is of great interest in electronic, aerospace, and biomedical applications. This paper presents a coupled electromagnetic-heat transfer model to predict the temperature distribution of multilayer copper nanoparticle packings on a glass substrate. It is shown that heat transfer within the nanoparticle packing is dominated by the interfacial thermal conductance between particles when the interfacial thermal conductance constant, GIC, is greater than 20 MW/m2K, but that for lower GIC values, thermal conduction through the air around the nanoparticles can also play a role in the overall heat transfer within the nanoparticle system. The coupled model is used to simulate heat transfer in a copper nanoparticle packing used in a typical microscale selective laser sintering (μ-SLS) process with an experimentally measured particle size distribution and layer thickness. The simulations predict that the nanoparticles will reach a temperature of 730 ± 3 K for a laser irradiation of 2.6 kW/cm2 and 1304 ± 23 K for a laser irradiation of 6 kW/cm2. These results are in good agreement with the experimentally observed laser-induced sintering and melting thresholds for copper nanoparticle packing on glass substrates. 
    more » « less
  2. We report a viable route to plasmonic nanoparticles with well-controlled sizes, shapes, and compositions. A series of monodisperse Ag and Au nanoparticles capped with polystyrene chains ( i.e. , “hairy” nanoparticles) are crafted by capitalizing on star-like diblock copolymers as nanoreactors. Such monodisperse nanoparticles render an accurate absorption spectrum, providing a strong basis for theoretical investigation into their optical properties. By combining the experimental study with the three-dimensional finite element calculation of electromagnetic field distributions, the contributions of both intra-band and inter-band transitions to plasmonic absorption are revealed. The calculated absorption spectra perfectly reproduce the experimental observations, including the peak positions, shapes, and trends of peak shifting or broadening as a function of nanoparticle sizes. The influences of nanoparticle dimensions and surface ligands on plasmonic absorption of metallic nanoparticles are also systematically explored. 
    more » « less
  3. Abstract

    Titanium nitride nanoparticles have become a research interest due to their distinguished optical and photothermal properties. Furthermore, the search for nanoparticle solutions with tunable nonlinear optical properties for laser‐based applications is critical. More specifically, third order optical nonlinearities such as reverse saturable absorption, optical liming, and self‐focusing are important in the biomedical and electronics fields. The optical nonlinearities of titanium nitride plasmonic nanoparticles are investigated as a function of material concentration in water solutions. Furthermore, the effect of nanoparticle clustering on optical nonlinearities is investigated by fabricating micrometer‐sized clusters of ≈50 nm titanium nitride particles. These studies demonstrate that the nonlinear absorption coefficient increases linearly with concentration. However, clusters require higher concentrations compared to the freestanding nanoparticles to exhibit similar nonlinear absorption coefficient and optical density. Similarly, the optical limiting threshold for titanium nitride nanoparticles appears to be lower compared to the cluster solutions, which is impacted by the collective scattering of nanoparticles and high reverse saturable absorption. In addition, self‐focusing is observed in the continuous resonant regime. This study provides an in‐depth analysis of the nonlinear optical properties of titanium nitride, with relevant consequences for applications such as sensor protection and photothermal therapy.

     
    more » « less
  4. Abstract

    Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom‐up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom‐up wet chemistry starts from batch synthesis of colloids, which requires time‐consuming and hard‐to‐scale steps like ligand exchange and self‐assembly. Herein, an unconventional bottom‐up wet‐chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water‐processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self‐assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.

     
    more » « less
  5. This paper describes how metal–organic frameworks (MOFs) conformally coated on plasmonic nanoparticle arrays can support exciton–plasmon modes with features resembling strong coupling but that are better understood by a weak coupling model. Thin films of Zn-porphyrin MOFs were assembled by dip coating on arrays of silver nanoparticles (NP@MOF) that sustain surface lattice resonances (SLRs). Coupling of excitons with these lattice plasmons led to an SLR-like mixed mode in both transmission and transient absorption spectra. The spectral position of the mixed mode could be tailored by detuning the SLR in different refractive index environments and by changing the periodicity of the nanoparticle array. Photoluminescence showed mode splitting that can be interpreted as modulation of the exciton line shape by the Fano profile of the surface lattice mode, without requiring Rabi splitting. Compared with pristine Zn-porphyrin, hybrid NP@MOF structures achieved a 16-fold enhancement in emission intensity. Our results establish MOFs as a crystalline molecular emitter material that can couple with plasmonic structures for energy exchange and transfer.

     
    more » « less