Both noble metal nanoparticles (NPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) provide resonant absorption in the visible, albeit through different mechanisms. Coherent oscillations of free conduction band electrons give rise to localized plasmons in noble metal NPs, whereas collective oscillations of bound electrons are responsible for quasistatic resonances in CuFeS2 NCs. This manuscript reviews the photophysical and photocatalytic properties of both noble metal and chalcopyrite nanostructures as well as direct and indirect charge and energy transfer processes in hybrid structures containing noble metal NPs and either semiconductor NCs or molecular photosensitizers or photocatalysts. CuFeS2 NCs share structural similarities with conventional semiconductor NCs, but the availability of collective charge oscillations in the visible facilitates a resonant coupling to localized plasmons in NPs. Hybrid nanostructures containing both metal and chalcopyrite building blocks are examined as a platform for wavelength-dependent charge and energy transfer and bifunctional reactivity for enhanced plasmonic photocatalysis.
more »
« less
CdSe/Ag Hybrid Aerogels: Integration of Plasmonic and Excitonic Properties of Metal–Semiconductor Nanostructures via Sol–Gel Assembly
Metal–semiconductor hybrid nanomaterials (HNMs) exhibit unique properties that are distinct from individual nanostructures, leading to promising applications in optical technologies. The interfacial linkage of semiconductor and metal nanoparticles (NPs) via cogelation is an effective strategy to produce HNMs that show strong plasmon‐exciton coupling and improved physical properties. However, optical properties of these hybrids show little to no tunability. Herein, CdSe/Ag hybrid aerogels that show tunable absorption and photoluminescence (PL) are produced by cogelation of CdSe nanorods (NRs) or NPs with Ag hollow NPs. Hybrid electronic states are created by overlapping the excitonic absorption of CdSe NRs or NPs with the plasmonic absorption of Ag NPs. Physical characterization of the hybrids reveals an interconnected network of hexagonal CdSe and cubic Ag NPs, linked by Ag+and Se2−surface species, without intervening ligands. PL spectra exhibit maxima at 640 and 720 nm for the CdSe NPs/Ag and CdSe NRs/Ag hybrids, respectively, corresponding to new radiative decay mechanisms. Time‐resolved PL data support the emergence of new radiative pathways, kinetically and energetically distinct from the excitonic and plasmonic properties of primary NPs. This new approach of metal–semiconductor hybrid formation through cogelation is intriguing for the design of high‐efficiency HNMs without detrimental PL quenching.
more »
« less
- Award ID(s):
- 1851916
- PAR ID:
- 10449651
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Photonics Research
- Volume:
- 2
- Issue:
- 9
- ISSN:
- 2699-9293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Size-confined Si nanorods (NRs) have gained notable interest because of their tunable photophysical properties that make them attractive for optoelectronic, charge storage, and sensor technologies. However, established routes for fabrication of Si NRs use well-defined substrates and/or nanoscopic seeds as promoters that cannot be easily removed, hindering the investigation of their true potential and physical properties. Herein, we report a facile, one-step route for the fabrication of Si NRs via thermal disproportionation of hydrogen silsesquioxane (HSQ) in the presence of a molecular tin precursor (SnCl4) at a substantially lower temperature (450 ºC) compared to those used in the synthesis of size-confined Si nanocrystals (>1000 ºC). The use of these precursors allows the facile isolation of phase pure Si NRs via HF etching and subsequent surface passivation with 1-dodecene via hydrosilylation. The diameters (7.7–16.5 nm) of the NRs can be controlled by varying the amount of SnCl4 (0.2–3.0%) introduced during the HSQ synthesis. Physical characterization of the NRs suggests that the diamond cubic structure is not affected by the SnCl4, HF etching, and hydrosilylation. Surface analysis of NRs indicates the presence of Si0 and Sin+ species, which can be attributed to core Si and surface Si species bonded to dodecane ligands, respectively, and a systematic variation of Si0: Si-C ratio with the NR diameter. The NRs show strong size confinement effects with solid-state absorption onsets (2.51–2.80 eV) and solution-state (Tauc) indirect energy gaps (2.54–2.70 eV) that can be tuned by varying the diameters (16.5–7.7 nm), respectively. Photoluminescence (PL) and time-resolved PL (TRPL) studies reveal size-dependent emission (1.95–2.20 eV) with short, nanosecond lifetimes across the visible spectrum which trend closely to absorption trends seen in solid-state absorption data. The facile synthesis developed for size-confined Si NRs with high crystallinity and tunable optical properties will promote their application in optoelectronic, charge storage, and sensing studies.more » « less
-
Abstract Organic metal halide hybrids have attracted tremendous research interests owing to their outstanding optical and electronic properties suitable for various applications, including photovoltaics, light‐emitting diodes, and photodetectors. Recently, the multifunctionality of this class of materials has been further explored beyond their optical and electronic properties. Here, for the first time the microwave electromagnetic properties of a 1D organic metal halide hybrid, (C6H13N4)3Pb2Br7, a single crystalline bulk assembly of organic metal halide nanotubes, are reported. Good microwave absorption performance with a large reflection loss value of −18.5 dB and a threshold bandwidth of 1.0 GHz is discovered for this material, suggesting its potential as a new microwave absorber. This work reveals a new functionality of organic metal halide hybrids and provides a new material class for microwave absorption application studies.more » « less
-
Abstract Thermoresponsive nanoparticles (NPs) represent an important hybrid material comprising functional NPs with temperature‐sensitive polymer ligands. Strikingly, significant discrepancies in optical and catalytic properties of thermoresponsive noble‐metal NPs have been reported, and have yet to be unraveled. Reported herein is the crafting of Au NPs, intimately and permanently ligated by thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM), in situ using a starlike block copolymer nanoreactor as model system to resolve the paradox noted above. As temperature rises, plasmonic absorption of PNIPAM‐capped Au NPs red‐shifts with increased intensity in the absence of free linear PNIPAM, whereas a greater red‐shift with decreased intensity occurs in the presence of deliberately introduced linear PNIPAM. Remarkably, the absence or addition of free linear PNIPAM also accounts for non‐monotonic or switchable on/off catalytic performance, respectively, of PNIPAM‐capped Au NPs.more » « less
-
Electronically doped metal oxide nanocrystals exhibit tunable infrared localized surface plasmon resonances (LSPRs). Despite the many benefits of IR resonant LSPRs in solution processable nanocrystals, the ways in which the electronic structure of the host semiconductor material impact metal oxide LSPRs are still being investigated. Semiconductors provide an alternative dielectric environment than metallically bonded solids, such as noble metals, which can impact how these materials undergo electronic relaxation following photoexcitation. Understanding these differences is key to developing applications that take advantage of the unique optical and electronic properties offered by plasmonic metal oxide NCs. Here, we use the two-temperature model in conjunction with femtosecond transient absorption experiments to describe how the internal temperature of two representative metal oxide nanocrystal systems, cubic WO 3−x and bixbyite Sn-doped In 2 O 3 , change following LSPR excitation. We find that the low free carrier concentrations of metal oxide NCs lead to less efficient heat generation as compared to metallic nanocrystals such as Ag. This suggests that metal oxide NCs may be ideal for applications wherein untoward heat generation may disrupt the application's overall performance, such as solar energy conversion and photonic gating.more » « less