skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface passivation extends single and biexciton lifetimes of InP quantum dots
Indium phosphide quantum dots (InP QDs) are nontoxic nanomaterials with potential applications in photocatalytic and optoelectronic fields. Post-synthetic treatments of InP QDs are known to be essential for improving their photoluminescence quantum efficiencies (PLQEs) and device performances, but the mechanisms remain poorly understood. Herein, by applying ultrafast transient absorption and photoluminescence spectroscopies, we systematically investigate the dynamics of photogenerated carriers in InP QDs and how they are affected by two common passivation methods: HF treatment and the growth of a heterostructure shell (ZnS in this study). The HF treatment is found to improve the PLQE up to 16–20% by removing an intrinsic fast hole trapping channel ( τ h,non = 3.4 ± 1 ns) in the untreated InP QDs while having little effect on the band-edge electron decay dynamics ( τ e = 26–32 ns). The growth of the ZnS shell, on the other hand, is shown to improve the PLQE up to 35–40% by passivating both electron and hole traps in InP QDs, resulting in both a long-lived band-edge electron ( τ e > 120 ns) and slower hole trapping lifetime ( τ h,non > 45 ns). Furthermore, both the untreated and the HF-treated InP QDs have short biexciton lifetimes ( τ xx ∼ 1.2 ± 0.2 ps). The growth of an ultra-thin ZnS shell (∼0.2 nm), on the other hand, can significantly extend the biexciton lifetime of InP QDs to 20 ± 2 ps, making it a passivation scheme that can improve both the single and multiple exciton lifetimes. Based on these results, we discuss the possible trap-assisted Auger processes in InP QDs, highlighting the particular importance of trap passivation for reducing the Auger recombination loss in InP QDs.  more » « less
Award ID(s):
1726536 1709182
PAR ID:
10195483
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
22
ISSN:
2041-6520
Page Range / eLocation ID:
5779 to 5789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications. 
    more » « less
  2. null (Ed.)
    The multistep and continuous production of core–shell III–V semiconductor nanocrystals remains a technological challenge. We present a newly designed high-temperature and miniature continuous stirred-tank reactor cascade, for the continuous and scalable synthesis of InP/ZnS core–shell quantum dots with a safer aminophosphine precursor comparing to standard protocols involving (TMS) 3 P . The resulting InP/ZnS QDs exhibit emissions between 520 and 610 nm, narrow emission linewidths in the range of 46–64 nm and photoluminescence quantum yields up to 42%. 
    more » « less
  3. Exciton dynamics o perovskite nanoclusters has been investigated or the rst time using emtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis o the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron−hole recombination. The ast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping rom the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lietimes o 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The signicant role o exciton trapping processes in the dynamics indicates that these highly conned nanoclusters have deect-rich suraces. 
    more » « less
  4. Abstract The actual incorporation of dopant species into the ZnS Quantum Dots (QDs) host lattice will induce structural defects evidenced by a red shift in the corresponding exciton. The doping should create new intermediate energetic levels between the valence and conduction bands of the ZnS and affect the electron-hole recombination. These trap states would favour the energy transfer processes involved with the generation of cytotoxic radicals, so-called Reactive Oxygen Species, opening the possibility to apply these nanomaterials in cancer research. Any synthesis approach should consider the direct formation of the QDs in biocompatible medium. Accordingly, the present work addresses the microwave-assisted aqueous synthesis of pure and doped ZnS QDs. As-synthesized quantum dots were fully characterized on a structural, morphological and optical viewpoint. UV-Vis analyzes evidenced the excitonic peaks at approximately 310 nm, 314 nm and 315 nm for ZnS, Cu-ZnS and Mn-ZnS, respectively, Cu/Zn and Mn/Zn molar ratio was 0.05%. This indicates the actual incorporation of the dopant species into the host lattice. In addition, the Photoluminescence spectrum of non-doped ZnS nanoparticles showed a high emission peak that was red shifted when Mn 2+ or Cu 2+ were added during the synthesis process. The main emission peak of non-doped ZnS, Cu-doped ZnS and Mn-doped ZnS were observed at 438 nm, 487 nm and 521 nm, respectively. Forthcoming work will address the capacity of pure and Cu-, Mn-ZnS quantum dots to generate cytotoxic Reactive Oxygen Species for cancer treatment applications. 
    more » « less
  5. Charged excited states can accumulate on the surface of colloidal quantum dots (QDs), affecting their optoelectronic properties. In experimental samples, QDs often have non-stoichiometric structures, giving rise to cation-rich and anion-rich nanostructures. We explore the effect of charge on the ground- and excited-state properties of CdSe non-stoichiometric QDs (NS-QDs) of ∼1.5 nm in size using density functional theory calculations. We compare two cases: (i) NS- QDs with a charge introduced by direct hole or electron injection and (ii) neutral NS-QDs with one removed surface ligand (with a dangling bond). Our calculations reveal that a neutral dangling bond has an effect on the electronic structure similar to that of the electron injection for the Cd-rich NS-QDs or hole injection for the Se-rich NS-QDs. In Cd-rich structures, either the injection of an electron or the removal of a passivating ligand results in the surface-localized half-filled trap state inside the energy gap. For Se-rich structures, either the injection of a hole or the removal of a ligand introduces surface-localized unoccupied trap states inside the energy gap. As a result, the charge localization formed by these two approaches leads to an appearance of low-energy electronic transitions strongly red-shifted from the main excitonic band of NS-QDs. These transitions related to a negative charge or a dangling bond exhibit weak optical activity in Cd-rich NS-QDs. Transitions related to a positive charge or a dangling bond are optically forbidden in Se-rich NS-QDs. In contrast, electron injection in Se-rich NS-QDs strongly increases the optical activity of the lowest- red-shifted charge-originated states. 
    more » « less