skip to main content


Title: Adaptive detection and accommodation of communication attacks on infinite dimensional systems with multiple interconnected actuator/sensor pairs
The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks.  more » « less
Award ID(s):
1825546
NSF-PAR ID:
10195589
Author(s) / Creator(s):
Date Published:
Journal Name:
2020 American Control Conference (ACC)
Page Range / eLocation ID:
2673 to 2678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is motivated by economic aspects of fixed initial and operating costs for control of spatially distributed systems. In particular, the paper investigates the possibility of a large number of inexpensive actuating and sensing devices, as an alternative to (a reduced number of) expensive high capacity devices. While such an alternative reduces the fixed initial costs associated with actuators and sensors, it may also lead to increased operating costs resulting from communication requirements between the now-networked actuator-sensor-control units. To simplify the controller architecture, a proportional controller is assumed that amounts to a static output feedback controller. In a network of n actuator-sensor pairs, an all-to-all communication topology results in a fully populated static output feedback matrix with as much as n(n-1) communication links. In addition to a traditional performance index used to obtain the static output feedback gain matrix, this paper proposes a mixed index wherein both the traditional performance index and the number of communication links (representing operating costs associated with information exchange links), are taken into account. As an example, the proposed scheme is applied to a parabolic partial differential equation having four actuator-sensor pairs. The resulting optimization produces a sparse static gain matrix with a communication topology that has half the graph edges of the fully connected case and with essentially the same performance. 
    more » « less
  2. Abstract

    This work presents a detector‐integrated two‐tier control architecture capable of identifying the presence of various types of cyber‐attacks, and ensuring closed‐loop system stability upon detection of the cyber‐attacks. Working with a general class of nonlinear systems, an upper‐tier Lyapunov‐based Model Predictive Controller (LMPC), using networked sensor measurements to improve closed‐loop performance, is coupled with lower‐tier cyber‐secure explicit feedback controllers to drive a nonlinear multivariable process to its steady state. Although the networked sensor measurements may be vulnerable to cyber‐attacks, the two‐tier control architecture ensures that the process will stay immune to destabilizing malicious cyber‐attacks. Data‐based attack detectors are developed using sensor measurements via machine‐learning methods, namely artificial neural networks (ANN), under nominal and noisy operating conditions, and applied online to a simulated reactor‐reactor‐separator process. Simulation results demonstrate the effectiveness of these detection algorithms in detecting and distinguishing between multiple classes of intelligent cyber‐attacks. Upon successful detection of cyber‐attacks, the two‐tier control architecture allows convenient reconfiguration of the control system to stabilize the process to its operating steady state.

     
    more » « less
  3. The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov-based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC. 
    more » « less
  4. null (Ed.)
    Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strong Quality-of-Control (QoC) guarantees even in the presence of false-data injection attacks, such as Man-in-the-Middle (MitM) attacks. Consequently, in this work, we focus on integrating security into existing resource-constrained CPS, in order to protect against MitM attacks on a system where a set of control tasks communicates over a real-time network with system sensors and actuators. We introduce a design-time methodology that incorporates requirements for QoC in the presence of attacks into end-to-end timing constraints for real-time control transactions, which include data acquisition and authentication, real-time network messages, and control tasks. This allows us to formulate a mixed integer linear programming-based method for direct synthesis of schedulable tasks and message parameters (i.e., deadlines and offsets) that do not violate timing requirements for the already deployed controllers, while adding a sufficient level of protection against network-based attacks; specifically, the synthesis method also provides suitable intermittent authentication policies that ensure the desired QoC levels under attack. To additionally reduce the security-related bandwidth overhead, we propose the use of cumulative message authentication at time instances when the integrity of messages from subsets of sensors should be ensured. Furthermore, we introduce a method for the opportunistic use of the remaining resources to further improve the overall QoC guarantees while ensuring system (i.e., task and message) schedulability. Finally, we demonstrate applicability and scalability of our methodology on synthetic automotive systems as well as a real-world automotive case-study. 
    more » « less
  5. Summary

    In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.

     
    more » « less