This paper is motivated by economic aspects of fixed initial and operating costs for control of spatially distributed systems. In particular, the paper investigates the possibility of a large number of inexpensive actuating and sensing devices, as an alternative to (a reduced number of) expensive high capacity devices. While such an alternative reduces the fixed initial costs associated with actuators and sensors, it may also lead to increased operating costs resulting from communication requirements between the now-networked actuator-sensor-control units. To simplify the controller architecture, a proportional controller is assumed that amounts to a static output feedback controller. In a network of n actuator-sensor pairs, an all-to-all communication topology results in a fully populated static output feedback matrix with as much as n(n-1) communication links. In addition to a traditional performance index used to obtain the static output feedback gain matrix, this paper proposes a mixed index wherein both the traditional performance index and the number of communication links (representing operating costs associated with information exchange links), are taken into account. As an example, the proposed scheme is applied to a parabolic partial differential equation having four actuator-sensor pairs. The resulting optimization produces a sparse static gain matrix with a communication topology that has half the graph edges of the fully connected case and with essentially the same performance.
more »
« less
Adaptive detection and accommodation of communication attacks on infinite dimensional systems with multiple interconnected actuator/sensor pairs
The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks.
more »
« less
- Award ID(s):
- 1825546
- PAR ID:
- 10195589
- Date Published:
- Journal Name:
- 2020 American Control Conference (ACC)
- Page Range / eLocation ID:
- 2673 to 2678
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov-based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC.more » « less
-
This paper proposes a multirate output-feedback controller for multi-input multi-output (MIMO) systems, possibly with non-minimum-phase zeros, using the L1 adaptive control structure. The analysis of stability and robustness of the sampled-data controller reveals that under certain conditions the performance of a continuous-time reference system is uniformly recovered as the sampling time goes to zero. The controller is designed for detection and mitigation of actuator attacks. By considering a multirate formulation, stealthy zero-dynamics attacks become detectable. The experimental results from the flight test of a small quadrotor are provided. The tests show that the multirate L1 controller can effectively detect the zero-dynamics actuator attack and recover stability of the quadrotor.more » « less
-
Summary In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.more » « less
-
This work focuses on the problem of enhancing cyberattack detection capabilities in process control systems subject to multiplicative cyberattacks. First, the relationship between closed-loop stability and attack detectability with respect to a class of residual-based detection schemes is rigorously analyzed. The results are used to identify a set of controller parameters (called "attack-sensitive" controller parameters) under which an attack can destabilize the closed-loop system. The selection of attack-sensitive controller parameters can enhance the ability to detect attacks, but can also degrade the performance of the attack-free closed-loop system. To balance this trade-off, a novel active attack detection methodology employing controller parameter switching between the nominal controller parameters (chosen on the basis of standard control design criteria) and the attack-sensitive controller parameters, is developed. The proposed methodology is applied to a chemical process example to demonstrate its ability to detect multiplicative sensor-controller communication link attacks.more » « less