The noise sensitivity of a Boolean function f: {0,1}^n  > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noisesensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone functionmore »
Approximating the noise sensitivity of a monotone Boolean function
The noise sensitivity of a Boolean function f:{0,1}n→{0,1} is one of its fundamental properties. A function of a positive noise parameter δ, it is denoted as NSδ[f]. Here we study the algorithmic problem of approximating it for monotone f, such that NSδ[f]≥1/nC for constant C, and where δ satisfies 1/n≤δ≤1/2. For such f and δ, we give a randomized algorithm performing O(min(1,n√δlog1.5n)NSδ[f]poly(1ϵ)) queries and approximating NSδ[f] to within a multiplicative factor of (1±ϵ). Given the same constraints on f and δ, we also prove a lower bound of Ω(min(1,n√δ)NSδ[f]⋅nξ) on the query complexity of any algorithm that approximates NSδ[f] to within any constant factor, where ξ can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n.
We introduce a novel descendingascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield previously unknown lower bounds on the more »
 Award ID(s):
 1740751
 Publication Date:
 NSFPAR ID:
 10195623
 Journal Name:
 International Conference on Randomization and Computation (RANDOM 2019)
 Sponsoring Org:
 National Science Foundation
More Like this


The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. kDistinctness: For any constant k, the approximate degree and quantum query complexity of the kdistinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of kdistinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. kJunta testing: A tight Ω~(k1/2) lower bound for kjunta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance frommore »

We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost kcycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4 or 5cycles in a worstcase instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve superconstant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3SUM or APSP conjectures. In particular, we prove that kapproximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4Cycle problem: An infamous open question in finegrained complexity is to establish any surprising consequences from amore »

We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is αfar from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an Otilde(\sqrt{n})approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (nontolerant) testing of monotonicity that can be done nonadaptively with Otilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasureresilient testers. An αerasureresilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion ofmore »

We study the problem of certification: given queries to a function f : {0,1}n → {0,1} with certificate complexity ≤ k and an input x⋆, output a sizek certificate for f’s value on x⋆. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with n queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with O(k8 logn) queries, which comes close to matching the informationtheoretic lower bound of Ω(k logn). The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponentialink lower bounds when f is nonmonotone, and when f is monotone but the algorithm is only given random examples of f. These lower bounds show that assumptions on the structure of f and query access to it are both necessary for the polynomial dependence on k that we achieve.