The noise sensitivity of a Boolean function f: {0,1}^n  > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noisesensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O'Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/ epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descendingascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.
more »
« less
Approximating the noise sensitivity of a monotone Boolean function
The noise sensitivity of a Boolean function f:{0,1}n→{0,1} is one of its fundamental properties. A function of a positive noise parameter δ, it is denoted as NSδ[f]. Here we study the algorithmic problem of approximating it for monotone f, such that NSδ[f]≥1/nC for constant C, and where δ satisfies 1/n≤δ≤1/2. For such f and δ, we give a randomized algorithm performing O(min(1,n√δlog1.5n)NSδ[f]poly(1ϵ)) queries and approximating NSδ[f] to within a multiplicative factor of (1±ϵ). Given the same constraints on f and δ, we also prove a lower bound of Ω(min(1,n√δ)NSδ[f]⋅nξ) on the query complexity of any algorithm that approximates NSδ[f] to within any constant factor, where ξ can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n.
We introduce a novel descendingascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield previously unknown lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.
more »
« less
 Award ID(s):
 1740751
 NSFPAR ID:
 10195623
 Date Published:
 Journal Name:
 International Conference on Randomization and Computation (RANDOM 2019)
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


null (Ed.)The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. kDistinctness: For any constant k, the approximate degree and quantum query complexity of the kdistinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of kdistinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. kJunta testing: A tight Ω~(k1/2) lower bound for kjunta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by lowdegree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).more » « less

Stefano Leonardi and Anupam Gupta (Ed.)A probabilistic algorithm A is pseudodeterministic if, on every input, there exists a canonical value that is output with high probability. If the algorithm outputs one of k canonical values with high probability, then it is called a kpseudodeterministic algorithm. In the study of pseudodeterminism, the Acceptance Probability Estimation Problem (APEP), which is to additively approximate the acceptance probability of a Boolean circuit, is emerging as a central computational problem. This problem admits a 2pseudodeterministic algorithm. Recently, it was shown that a pseudodeterministic algorithm for this problem would imply that any multivalued function that admits a kpseudodeterministic algorithm for a constant k (including approximation algorithms) also admits a pseudodeterministic algorithm (Dixon, Pavan, Vinodchandran; ITCS 2021). The contribution of the present work is twofold. First, as our main conceptual contribution, we establish that the existence of a pseudodeterministic algorithm for APEP is fundamentally related to the gap between probabilistic promise classes and the corresponding standard complexity classes. In particular, we show the following equivalence: APEP has a pseudodeterministic approximation algorithm if and only if every promise problem in PromiseBPP has a solution in BPP. A conceptual interpretation of this equivalence is that the algorithmic gap between 2pseudodeterminism and pseudodeterminism is equivalent to the gap between PromiseBPP and BPP. Based on this connection, we show that designing pseudodeterministic algorithms for APEP leads to the solution of some open problems in complexity theory, including new Boolean circuit lower bounds. This equivalence also explains how multipseudodeterminism is connected to problems in SearchBPP. In particular, we show that if APEP has a pseudodeterministic algorithm, then every problem that admits a k(n)pseudodeterministic algorithm (for any polynomial k) is in SearchBPP and admits a pseudodeterministic algorithm. Motivated by this connection, we also explore its connection to probabilistic search problems and establish that APEP is complete for certain notions of search problems in the context of pseudodeterminism. Our second contribution is establishing query complexity lower bounds for multipseudodeterministic computations. We prove that for every k ≥ 1, there exists a problem whose (k+1)pseudodeterministic query complexity, in the uniform query model, is O(1) but has a kpseudodeterministic query complexity of Ω(n), even in the more general nonadaptive query model. A key contribution of this part of the work is the utilization of Sperner’s lemma in establishing query complexity lower bounds.more » « less

We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost kcycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4 or 5cycles in a worstcase instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve superconstant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3SUM or APSP conjectures. In particular, we prove that kapproximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4Cycle problem: An infamous open question in finegrained complexity is to establish any surprising consequences from a subquadratic or even lineartime algorithm for detecting a 4cycle in a graph. This is arguably one of the simplest problems without a nearlinear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for kcycle detection for all k≥ 4, unless we can detect a triangle in √ndegree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms.more » « less

We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is αfar from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an Otilde(\sqrt{n})approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (nontolerant) testing of monotonicity that can be done nonadaptively with Otilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasureresilient testers. An αerasureresilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is εfar from having the property. Our method yields the same lower bounds for unateness and being a kjunta. These lower bounds improve exponentially on the existing lower bounds for these properties.more » « less