Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire objectmore »
Local Access to Huge Random Objects through Partial Sampling
Consider an algorithm performing a computation on a huge random object. Is it necessary to generate the entire object up front, or is it possible to provide query access to the object and sample it incrementally "on-the-fly"? Such an implementation should emulate the object by answering queries in a manner consistent with a random instance sampled from the true distribution.
Our first set of results focus on undirected graphs with independent edge probabilities, under certain assumptions. Then, we use this to obtain the first efficient implementations for the Erdos-Renyi model and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. We also introduce a new Random-Neighbor query.
Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (always positive random walks on the integer line). Here, we support Height queries to find the position of the walk, and First-Return queries to find the time when the walk returns to a specified height. This in turn can be used to implement Next-Neighbor queries on random rooted/binary trees, and Matching-Bracket queries on random well bracketed expressions.
Finally, we define a new model that: (1) allows multiple independent simultaneous instantiations of the same more »
- Publication Date:
- NSF-PAR ID:
- 10195627
- Journal Name:
- 11th Innovations in Theoretical Computer Science (ITCS 2020)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvaluemore »
-
The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a near-linear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G'. The graph G' is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent workmore »
-
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ∗(n/ √ m) for sampling a single edge in generalmore »
-
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ε-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ^*(n/√ m) for sampling a single edge in general graphsmore »