skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A user-operator assignment game with heterogeneous user groups for empirical evaluation of a microtransit service in Luxembourg
We tackle the problem of evaluating the impact of different operation policies on the performance of a microtransit service. This study is the first empirical application using the stable matching modelling framework to evaluate different operation cost allocation and pricing mechanisms on microtransit service. We extend the deterministic stable matching model to a stochastic reliability-based one to consider user’s heterogeneous perceptions of utility on the service routes. The proposed model is applied to the evaluation of Kussbus microtransit service in Luxembourg. We found that the current Kussbus operation is not a stable outcome. By reducing their route operating costs of 50%, it is expected to increase the ridership of 10%. If Kussbus can reduce in-vehicle travel time on their own by 20%, they can significantly increase profit several folds from the baseline.  more » « less
Award ID(s):
1634973
PAR ID:
10195659
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transportmetrica A: Transport Science
ISSN:
2324-9935
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study (public) microtransit, a type of transportation service wherein a municipality offers point-to-point rides to residents, for a fixed, nominal fare. Microtransit exemplifies practical resource allocation problems that are often over-constrained in that not all ride requests (pickup and dropoff locations at specified times) can be satisfied or satisfied only by violating soft goals such as sustainability, and where economic signals (e.g., surge pricing) are not applicable—they would lead to unethical outcomes by effectively coercing poor people.We posit that instead of taking rider preferences as fixed, shaping them prosocially will lead to improved societal outcomes. Prosociality refers to an attitude or behavior that is intended to benefit others. This paper demonstrates a computational approach to prosociality in the context of a (public) microtransit service for disadvantaged riders. Prosociality appears as a willingness to adjust one’s pickup and dropoff times and locations to accommodate the schedules of others and to enable sharing rides (which increases the number of riders served with the same resources).This paper describes an interdisciplinary study of prosociality in microtransit between a transportation researcher, psychologists, a social scientist, and AI researchers. Our contributions are these: (1) empirical support for the viability of prosociality in microtransit (and constraints on it) through interviews with drivers and focus groups of riders; (2) a prototype mobile app demonstrating how our prosocial intervention can be combined with the transportation backend; (3) a reinforcement learning approach to model a rider and determine the best interventions to persuade that rider toward prosociality; and (4) a cognitive model of rider personas to enable evaluation of alternative interventions. 
    more » « less
  2. null (Ed.)
    This study evaluates the level of service of shared transportation facilities through mining geotagged data from social media and analyzing the perceptions of road users. An algorithm is developed adopting a text classification approach with contextual understanding to filter out relevant information related to users’ perceptions toward active mobility. Using a heuristic-based keyword matching approach produces about 75% tweets that are out of context, so that approach is deemed unsuitable for information extraction from Twitter. This study implements six different text classification models and compares the performance of these models for tweet classification. The model is applied to real-world data to filter out relevant information, and content analysis is performed to check the distribution of keywords within the filtered data. The text classification model “term frequency-inverse document frequency” vectorizer-based logistic regression model performed best at classifying the tweets. To select the best model, the performances of the models are compared based on precision, recall, F1 score (geometric mean of precision and recall), and accuracy metrics. The findings from the analysis show that the proposed method can help produce more relevant information on walking and biking facilities as well as safety concerns. By analyzing the sentiments of the filtered data, the existing condition of biking and walking facilities in the DC area can be inferred. This method can be a critical part of the decision support system to understand the qualitative level of service of existing transportation facilities. 
    more » « less
  3. Regular expression denial of service (ReDoS)— which exploits the super-linear running time of matching regular expressions against carefully crafted inputs—is an emerging class of DoS attacks to web services. One challenging question for a victim web service under ReDoS attacks is how to quickly recover its normal operation after ReDoS attacks, especially these zero-day ones exploiting previously unknown vulnerabilities.In this paper, we present RegexNet, the first payload-based, automated, reactive ReDoS recovery system for web services. RegexNet adopts a learning model, which is updated constantly in a feedback loop during runtime, to classify payloads of upcoming requests including the request contents and database query responses. If detected as a cause leading to ReDoS, RegexNet migrates those requests to a sandbox and isolates their execution for a fast, first-measure recovery.We have implemented a RegexNet prototype and integrated it with HAProxy and Node.js. Evaluation results show that RegexNet is effective in recovering the performance of web services against zero-day ReDoS attacks, responsive on reacting to attacks in sub-minute, and resilient to different ReDoS attack types including adaptive ones that are designed to evade RegexNet on purpose. 
    more » « less
  4. Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market. 
    more » « less
  5. Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market. 
    more » « less