skip to main content


Title: Language-guided Semantic Mapping and Mobile Manipulation in Partially Observable Environments
Recent advances in data-driven models for grounded language understanding have enabled robots to interpret increasingly complex instructions. Two fundamental limitations of these methods are that most require a full model of the environment to be known a priori, and they attempt to reason over a world representation that is flat and unnecessarily detailed, which limits scalability. Recent semantic mapping methods address partial observability by exploiting language as a sensor to infer a distribution over topological, metric and semantic properties of the environment. However, maintaining a distribution over highly detailed maps that can support grounding of diverse instructions is computationally expensive and hinders real-time human-robot collaboration. We propose a novel framework that learns to adapt perception according to the task in order to maintain compact distributions over semantic maps. Experiments with a mobile manipulator demonstrate more efficient instruction following in a priori unknown environments.  more » « less
Award ID(s):
1637813
NSF-PAR ID:
10195684
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
100
ISSN:
2640-3498
Page Range / eLocation ID:
1201-1210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment. 
    more » « less
  2. The speed and accuracy with which robots are able to interpret natural language is fundamental to realizing effective human-robot interaction. A great deal of attention has been paid to developing models and approximate inference algorithms that improve the efficiency of language understanding. However, existing methods still attempt to reason over a representation of the environment that is flat and unnecessarily detailed, which limits scalability. An open problem is then to develop methods capable of producing the most compact environment model sufficient for accurate and efficient natural language understanding. We propose a model that leverages environment-related information encoded within instructions to identify the subset of observations and perceptual classifiers necessary to perceive a succinct, instruction-specific environment representation. The framework uses three probabilistic graphical models trained from a corpus of annotated instructions to infer salient scene semantics, perceptual classifiers, and grounded symbols. Experimental results on two robots operating in different environments demonstrate that by exploiting the content and the structure of the instructions, our method learns compact environment representations that significantly improve the efficiency of natural language symbol grounding. 
    more » « less
  3. The speed and accuracy with which robots are able to interpret natural language is fundamental to realizing effective human-robot interaction. A great deal of attention has been paid to developing models and approximate inference algorithms that improve the efficiency of language understanding. However, existing methods still attempt to reason over a representation of the environment that is flat and unnecessarily detailed, which limits scalability. An open problem is then to develop methods capable of producing the most compact environment model sufficient for accurate and efficient natural language understanding. We propose a model that leverages environment-related information encoded within instructions to identify the subset of observations and perceptual classifiers necessary to perceive a succinct, instruction-specific environment representation. The framework uses three probabilistic graphical models trained from a corpus of annotated instructions to infer salient scene semantics, perceptual classifiers, and grounded symbols. Experimental results on two robots operating in different environments demonstrate that by exploiting the content and the structure of the instructions, our method learns compact environment representations that significantly improve the efficiency of natural language symbol grounding. 
    more » « less
  4. Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma’s Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60 % more often on average, compared to learning without language. 
    more » « less
  5. We present a novel approach where wafer map pattern analytics are driven by natural language queries. At the core is a semantic parser that translates a user query into a meaning representation comprising instructions to generate a summary plot. The allowable plot types are pre-defined which serve as an interface that communicates user intents to the analytics software backend. Application results on wafer maps from a recent production line are presented to explain the capabilities and benefits of the proposed approach. 
    more » « less