skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wafer Map Pattern Analytics Driven By Natural Language Queries
We present a novel approach where wafer map pattern analytics are driven by natural language queries. At the core is a semantic parser that translates a user query into a meaning representation comprising instructions to generate a summary plot. The allowable plot types are pre-defined which serve as an interface that communicates user intents to the analytics software backend. Application results on wafer maps from a recent production line are presented to explain the capabilities and benefits of the proposed approach.  more » « less
Award ID(s):
2006739
PAR ID:
10465157
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE International Test Conference in Asia (ITC-Asia)
Page Range / eLocation ID:
31 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the context of analyzing wafer maps, we present a novel approach to enable analytics to be driven by user queries. The analytic context includes two aspects: (1) grouping wafer maps based on their failure patterns and (2) for a failure pattern found at wafer probe, checking to see whether there is a correlation to the result from the final test (feedforward) and to the result from the E-test (feedback). We introduce language driven analytics and show how a formal language model in the backend can enable natural language queries in the frontend. The approach is applied to analyze test data from a recent product line, with interesting findings highlighted to explain the approach and its use. 
    more » « less
  2. null (Ed.)
    In this work, we consider learning a wafer plot recognizer where only one training sample is available. We introduce an approach called Manifestation Learning to enable the learning. The underlying technology utilizes the Variational AutoEncoder (VAE) approach to construct a so-called Manifestation Space. The training sample is projected into this space and the recognition is achieved through a pre-trained model in the space. Using wafer probe test data from an automotive product line, this paper explains the learning approach, its feasibility and limitation. 
    more » « less
  3. Although many efforts are being made to provide educators with dashboards and tools to understand student behaviors within specific technological environments (learning analytics), there is a lack of work in supporting educators in making data-informed design decisions when designing a blended course and planning learning activities. In this paper, we introduce concept-level design analytics, a knowledge-based visualization, which uncovers facets of the learning activities that are being authored. The visualization is integrated into a (blended) learning design authoring tool, edCrumble. This new approach is explored in the context of a higher education programming course, where teaching assistants design labs and home practice sessions with online smart learning content on a weekly basis. We performed a within-subjects user study to compare the use of the design tool both with and without the visualization. We studied the differences in terms of cognitive load, design outcomes and user actions within the system to compare both conditions to the objective of evaluating the impact of using design analytics during the decision-making phase of course design. 
    more » « less
  4. Abstract This paper introduces a novel wafer-edge quality inspection method based on analysis of curved-edge diffractive fringe patterns, which occur when light is incident and diffracts around the wafer edge. The proposed method aims to identify various defect modes at the wafer edges, including particles, chipping, scratches, thin-film deposition, and hybrid defect cases. The diffraction patterns formed behind the wafer edge are influenced by various factors, including the edge geometry, topography, and the presence of defects. In this study, edge diffractive fringe patterns were obtained from two approaches: (1) a single photodiode collected curved-edge interferometric fringe patterns by scanning the wafer edge and (2) an imaging device coupled with an objective lens captured the fringe image. The first approach allowed the wafer apex characterization, while the second approach enabled simultaneous localization and characterization of wafer quality along two bevels and apex directions. The collected fringe patterns were analyzed by both statistical feature extraction and wavelet transform; corresponding features were also evaluated through logarithm approximation. In sum, both proposed wafer-edge inspection methods can effectively characterize various wafer-edge defect modes. Their potential lies in their applicability to online wafer metrology and inspection applications, thereby contributing to the advancement of wafer manufacturing processes. 
    more » « less
  5. null (Ed.)
    Over the last 10 years, learning analytics have provided educators with both dashboards and tools to understand student behaviors within specific technological environments. However, there is a lack of work to support educators in making data-informed design decisions when designing a blended course and planning appropriate learning activities. In this paper, we introduce knowledge-based design analytics that uncover facets of the learning activities that are being created. A knowledge-based visualization is integrated into edCrumble, a (blended) learning design authoring tool. This new approach is explored in the context of a higher education programming course, where instructors design labs and home practice sessions with online smart learning content on a weekly basis. We performed a within-subjects user study to compare the use of the design tool both with and without visualization. We studied the differences in terms of cognitive load, controllability, confidence and ease of choice, design outcomes, and user actions within the system to compare both conditions with the objective of evaluating the impact of using design analytics during the decision-making phase of course design. Our results indicate that the use of a knowledge-based visualization allows the teachers to reduce the cognitive load (especially in terms of mental demand) and that it facilitates the choice of the most appropriate activities without affecting the overall design time. In conclusion, the use of knowledge-based design analytics improves the overall learning design quality and helps teachers avoid committing design errors. 
    more » « less