skip to main content

Title: Central pattern generator with inertial feedback for stable locomotion and climbing in unstructured terrain.
: Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy.
Award ID(s):
Publication Date:
Journal Name:
IEEE International Conference on Robotics and Automation
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture.
  2. Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.
  3. This paper proposes an online gain adaptation approach to enhance the robustness of whole-body control (WBC) framework for legged robots under unknown external force disturbances. Without properly accounting for external forces, the closed-loop control system incorporating WBC may become unstable, and therefore the desired task goals may not be achievable. To study the effects of external disturbances, we analyze the behavior of our current WBC framework via the use of both full-body and centroidal dynamics. In turn, we propose a way to adapt feedback gains for stabilizing the controlled system automatically. Based on model approximations and stability theory, we propose three conditions to ensure that the adjusted gains are suitable for stabilizing a robot under WBC. The proposed approach has four contributions. We make it possible to estimate the unknown disturbances without force/torque sensors. We then compute adaptive gains based on theoretic stability analysis incorporating the unknown forces at the joint actuation level. We demonstrate that the proposed method reduces task tracking errors under the effect of external forces on the robot. In addition, the proposed method is easy-to-use without further modifications of the controllers and task specifications. The resulting gain adaptation process is able to run in real-time. Finally,more »we verify the effectiveness of our method both in simulations and experiments using the bipedal robot Draco2 and the humanoid robot Valkyrie .« less
  4. Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands.
  5. The traditional locomotion paradigm of quadruped robots is to use dexterous (multi degrees of freedom) legs and dynamically optimized footholds to balance the body and achieve stable locomotion. With the introduction of a robotic tail, a new locomotion paradigm becomes possible as the balancing is achieved by the tail and the legs are only responsible for propulsion. Since the burden on the leg is reduced, leg complexity can be also reduced. This paper explores this new paradigm by tackling the dynamic locomotion control problem of a reduced complexity quadruped (RCQ) with a pendulum tail. For this specific control task, a new control strategy is proposed in a manner that the legs are planned to execute the open-loop gait motion in advance, while the tail is controlled in a closed-loop to prepare the quadruped body in the desired orientation. With these two parts working cooperatively, the quadruped achieves dynamic locomotion. Partial feedback linearization (PFL) controller is used for the closed-loop tail control. Pronking, bounding, and maneuvering are tested to evaluate the controller’s performance. The results validate the proposed controller and demonstrate the feasibility and potential of the new locomotion paradigm.