skip to main content

Title: Virtual Guide Dog: Next-generation pedestrian signal for the visually impaired
Accessible pedestrian signal was proposed as a mean to achieve the same level of service that is set forth by the Americans with Disabilities Act for the visually impaired. One of the major issues of existing accessible pedestrian signals is the failure to deliver adequate crossing information for the visually impaired. This article presents a mobile-based accessible pedestrian signal application, namely, Virtual Guide Dog. Integrating intersection information and onboard sensors (e.g. GPS, compass, accelerometer, and gyroscope sensor) of modern smartphones, the Virtual Guide Dog application can notify the visually impaired: (1) the close proximity of an intersection and (2) the street information for crossing. By employing a screen tapping interface, Virtual Guide Dog can remotely place a pedestrian crossing call to the controller, without the need of using a pushbutton. In addition, Virtual Guide Dog informs VIs the start of a crossing phase using text-to-speech technology. The proof-of-concept test shows that Virtual Guide Dog keeps the users informed about the remaining distance as they are approaching the intersection. It was also found that the GPS-only mode is accompanied by greater distance deviation compared to the mode jointly operating with both GPS and cellular positioning.
Award ID(s):
Publication Date:
Journal Name:
Advances in Mechanical Engineering
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. GPS accuracy is poor in indoor environments and around buildings. Thus, reading and following signs still remains the most common mechanism for providing and receiving wayfinding information in such spaces. This puts individuals who are blind or visually impaired (BVI) at a great disadvantage. This work designs, implements, and evaluates a wayfinding system and smartphone application called CityGuide that can be used by BVI individuals to navigate their surroundings beyond what is possible with just a GPS-based system. CityGuide enables an individual to query and get turn-by-turn shortest route directions from an indoor location to an outdoor location. CityGuide leveragesmore »recently developed indoor wayfinding solutions in conjunction with GPS signals to provide a seamless indoor-outdoor navigation and wayfinding system that guides a BVI individual to their desired destination through the shortest route. Evaluations of CityGuide with BVI human subjects navigating between an indoor starting point to an outdoor destination within an unfamiliar university campus scenario showed it to be effective in reducing end-to-end navigation times and distances of almost all participants.« less
  2. For the significant global population of individuals who are blind or visually impaired, spatial awareness during navigation remains a challenge. Tactile Electronic Travel Aids have been designed to assist with the provision of spatiotemporal information, but an intuitive method for mapping this information to patterns on a vibrotactile display remains to be determined. This paper explores the encoding of distance from a navigator to an object using two strategies: absolute and relative. A wearable prototype, the HapBack, is presented with two straps of vertically aligned vibrotactile motors mapped to five distances, with each distance mapped to a row on themore »display. Absolute patterns emit a single vibration at the row corresponding to a distance, while relative patterns emit a sequence of vibrations starting from the bottom row and ending at the row mapped to that distance. These two encoding strategies are comparatively evaluated for identification accuracy and perceived intuitiveness of mapping among ten adult participants who are blind or visually impaired. No significant difference was found between the intuitiveness of the two encodings based on these metrics, with each showing promising results for application during navigation tasks.« less
  3. Disabled people are in a dire need of electronic assistance. There are a couple of electronic assisting devices that bring their life to an easier turn. In this paper, we describe the design and implementation of a personal assistant robot for blind people. Visually impaired people need such personal assistant devices for they provide a real-time assistance regarding any necessary problem that blind people face. Some of those main problems are navigation in the indoors, identifying objects around unless getting a physical sense of those objects and sensing the surrounding with the distance of multiple objects. Our paper discusses themore »various application targeting features like using the LIDAR for local mapping, using a 3D camera for understanding the depth of the surrounding so that the person understands the distance and other information of the objects around. This design has been experimentally validated and required observations are posted in this paper.« less
  4. Many images on the Web, including photographs and artistic images, feature spatial relationships between objects that are inaccessible to someone who is blind or visually impaired even when a text description is provided. While some tools exist to manually create accessible image descriptions, this work is time consuming and requires specialized tools. We introduce an approach that automatically creates spatially registered image labels based on how a sighted person naturally interacts with the image. Our system collects behavioral data from sighted viewers of an image, specifically eye gaze data and spoken descriptions, and uses them to generate a spatially indexedmore »accessible image that can then be explored using an audio-based touch screen application. We describe our approach to assigning text labels to locations in an image based on eye gaze. We then report on two formative studies with blind users testing EyeDescribe. Our approach resulted in correct labels for all objects in our image set. Participants were able to better recall the location of objects when given both object labels and spatial locations. This approach provides a new method for creating accessible images with minimum required effort.« less
  5. Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment andmore »the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allows BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts.« less