skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Vector Threshold Model for the Simultaneous Spread of Correlated Influence
Spread of influence is one of the most widely studied propagation processes in the literature on complex networks. Examples include the rise of collective action to join a riot and diffusion of beliefs, norms, and cultural fads, to name a few. Most existing works on modeling influence propagation consider a single content (e.g., an opinion, decision, product, political view, etc.) spreading over a network independent from everything else. However, most real-life examples involve multiple correlated contents spreading simultaneously and exhibiting positive (e.g., opinions on same-sex marriage and gun control) or negative (e.g., opinions on universal health care and tax-relief for the “rich”) correlation. To accommodate these cases, this paper proposes the vector threshold model, as an extension of the widely used Watts threshold model for complex contagions. Here, the state of a node is represented by a binary vector representing their opinion on a number of content items. Nodes switch their states based on the influence they receive from their neighbors in the network. The influence is represented by a vector containing the proportion of neighbors who support each content; both positively and negatively correlated contents can be captured in this formulation by using different rules for switching node states. Our main result is concerned with the expected size of global cascades, i.e., cases where a randomly chosen node can initiate a propagation that eventually reaches a positive fraction of the whole population. We also derive conditions on network structure for global cascades to be possible. Analytic results are supported by a numerical study.  more » « less
Award ID(s):
1813637
PAR ID:
10196220
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICC 2019 - 2019 IEEE International Conference on Communications (ICC)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex contagion models have been developed to understand a wide range of social phenomena such as adoption of cultural fads, the diffusion of belief, norms, and innovations in social networks, and the rise of collective action to join a riot. Most existing works focus on contagions where individuals’ states are represented by binary variables, and propagation takes place over a single isolated network. However, characterization of an individual’s standing on a given matter as a binary state might be overly simplistic as most of our opinions, feelings, and perceptions vary over more than two states. Also, most real-world contagions take place over multiple networks (e.g., Twitter and Facebook) or involve multiplex networks where individuals engage in different types of relationships (e.g., co-worker, family, etc.). To this end, this paper studies multi-stage complex contagions that take place over multi-layer or multiplex networks. Under a linear threshold based contagion model, we first give analytic results for the expected size of global cascades, i.e., cases where a randomly chosen node can initiate a propagation that eventually reaches a positive fraction of the whole population. Then, analytic results are confirmed by an extensive numerical study. In addition, we demonstrate how the dynamics of complex contagions is affected by the structural properties of the networks. In particular, we reveal an interesting connection between the assortativity of a network and the impact of hyper-active nodes on the cascade size. 
    more » « less
  2. We provide a compressive-measurement based method to detect susceptible agents who may receive misinformation through their contact with ‘stubborn agents’ whose goal is to influence the opinions of agents in the network. We consider a DeGroot-type opinion dynamics model where regular agents revise their opinions by linearly combining their neighbors’ opinions, but stubborn agents, while influencing others, do not change their opinions. Our proposed method hinges on estimating the temporal difference vector of network-wide opinions, computed at time instances when the stubborn agents interact. We show that this temporal difference vector has approximately the same support as the locations of the susceptible agents. Moreover, both the interaction instances and the temporal difference vector can be estimated from a small number of aggregated opinions. The performance of our method is studied both analytically and empirically. We show that the detection error decreases when the social network is better connected, or when the stubborn agents are ‘less talkative’. 
    more » « less
  3. We propose an SIR epidemic model coupled with opinion dynamics to study an epidemic and opinions spreading in a network of communities. Our model couples networked SIR epidemic dynamics and opinions towards the severity of the epidemic. We develop an epidemic-opinion based threshold condition to capture the moment when a weighted average of the epidemic states starts to decrease exponentially fast over the network, namely the peak infection time. We define an effective reproduction number to characterize the behavior of the model through the peak infection time. We use both analytical and simulation-based results to illustrate that the opinions reflect the recovered levels within the communities after the epidemic dies out. 
    more » « less
  4. Abstract Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM. 
    more » « less
  5. We propose a mathematical model to study coupled epidemic and opinion dynamics in a network of communities. Our model captures SIS epidemic dynamics whose evolution is dependent on the opinions of the communities toward the epidemic, and vice versa. In particular, we allow both cooperative and antagonistic interactions, representing similar and opposing perspectives on the severity of the epidemic, respectively. We propose an Opinion-Dependent Reproduction Number to characterize the mutual influence between epidemic spreading and opinion dissemination over the networks. Through stability analysis of the equilibria, we explore the impact of opinions on both epidemic outbreak and eradication, characterized by bounds on the Opinion-Dependent Reproduction Number. We also show how to eradicate epidemics by reshaping the opinions, offering researchers an approach for designing control strategies to reach target audiences to ensure effective epidemic suppression. 
    more » « less