We propose an SIR epidemic model coupled with opinion dynamics to study an epidemic and opinions spreading in a network of communities. Our model couples networked SIR epidemic dynamics and opinions towards the severity of the epidemic. We develop an epidemic-opinion based threshold condition to capture the moment when a weighted average of the epidemic states starts to decrease exponentially fast over the network, namely the peak infection time. We define an effective reproduction number to characterize the behavior of the model through the peak infection time. We use both analytical and simulation-based results to illustrate that the opinions reflect the recovered levels within the communities after the epidemic dies out.
more »
« less
On a Networked SIS Epidemic Model with Cooperative and Antagonistic Opinion Dynamics
We propose a mathematical model to study coupled epidemic and opinion dynamics in a network of communities. Our model captures SIS epidemic dynamics whose evolution is dependent on the opinions of the communities toward the epidemic, and vice versa. In particular, we allow both cooperative and antagonistic interactions, representing similar and opposing perspectives on the severity of the epidemic, respectively. We propose an Opinion-Dependent Reproduction Number to characterize the mutual influence between epidemic spreading and opinion dissemination over the networks. Through stability analysis of the equilibria, we explore the impact of opinions on both epidemic outbreak and eradication, characterized by bounds on the Opinion-Dependent Reproduction Number. We also show how to eradicate epidemics by reshaping the opinions, offering researchers an approach for designing control strategies to reach target audiences to ensure effective epidemic suppression.
more »
« less
- Award ID(s):
- 2032258
- PAR ID:
- 10320303
- Date Published:
- Journal Name:
- IEEE Transactions on Control of Network Systems
- ISSN:
- 2372-2533
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM.more » « less
-
The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity, is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we study a complementary mechanism for the formation of opinion disparity based on higher-order interactions, i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process with a mean-field model and find that for strong enough community structure, the two communities can hold very different average opinions. We determine the regimes of structural and infectious parameters for which this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to the triangle community structure than to the link community structure. We show that the existence and type of opinion disparities are extremely sensitive to differences in the sizes of the two communities.more » « less
-
We provide a compressive-measurement based method to detect susceptible agents who may receive misinformation through their contact with ‘stubborn agents’ whose goal is to influence the opinions of agents in the network. We consider a DeGroot-type opinion dynamics model where regular agents revise their opinions by linearly combining their neighbors’ opinions, but stubborn agents, while influencing others, do not change their opinions. Our proposed method hinges on estimating the temporal difference vector of network-wide opinions, computed at time instances when the stubborn agents interact. We show that this temporal difference vector has approximately the same support as the locations of the susceptible agents. Moreover, both the interaction instances and the temporal difference vector can be estimated from a small number of aggregated opinions. The performance of our method is studied both analytically and empirically. We show that the detection error decreases when the social network is better connected, or when the stubborn agents are ‘less talkative’.more » « less
-
Britton, Tom (Ed.)During pandemics, countries, regions, and communities develop various epidemic models to evaluate spread and guide mitigation policies. However, model uncertainties caused by complex transmission behaviors, contact-tracing networks, time-varying parameters, human factors, and limited data present significant challenges to model-based approaches. To address these issues, we propose a novel framework that centers around reproduction number estimates to perform counterfactual analysis, strategy evaluation, and feedback control of epidemics. The framework 1) introduces a mechanism to quantify the impact of the testing-for-isolation intervention strategy on the basic reproduction number. Building on this mechanism, the framework 2) proposes a method to reverse engineer the effective reproduction number under different strengths of the intervention strategy. In addition, based on the method that quantifies the impact of the testing-for-isolation strategy on the basic reproduction number, the framework 3) proposes a closed-loop control algorithm that uses the effective reproduction number both as feedback to indicate the severity of the spread and as the control goal to guide adjustments in the intensity of the intervention. We illustrate the framework, along with its three core methods, by addressing three key questions and validating its effectiveness using data collected during the COVID-19 pandemic at the University of Illinois Urbana-Champaign (UIUC) and Purdue University: 1) How severe would an outbreak have been without the implemented intervention strategies? 2) What impact would varying the intervention strength have had on an outbreak? 3) How can we adjust the intervention intensity based on the current state of an outbreak?more » « less
An official website of the United States government

