Background People with low health literacy experience more challenges in understanding instructions given by their health providers, following prescriptions, and understanding their health care system sufficiently to obtain the maximum benefits. People with insufficient health literacy have high risk of making medical mistakes, more chances of experiencing adverse drug effects, and inferior control of chronic diseases. Objective This study aims to design, develop, and evaluate a mobile health app, MediReader, to help individuals better understand complex medical materials and improve their health literacy. Methods MediReader is designed and implemented through several steps, which are as follows: measure and understand an individual’s health literacy level; identify medical terminologies that the individual may not understand based on their health literacy; annotate and interpret the identified medical terminologies tailored to the individual’s reading skill levels, with meanings defined in the appropriate external knowledge sources; evaluate MediReader using task-based user study and satisfaction surveys. Results On the basis of the comparison with a control group, user study results demonstrate that MediReader can improve users’ understanding of medical documents. This improvement is particularly significant for users with low health literacy levels. The satisfaction survey showed that users are satisfied with the tool in general. Conclusions MediReader provides an easy-to-use interface for users to read and understand medical documents. It can effectively identify medical terms that a user may not understand, and then, annotate and interpret them with appropriate meanings using languages that the user can understand. Experimental results demonstrate the feasibility of using this tool to improve an individual’s understanding of medical materials.
more »
« less
Designing Alternative Representations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance
Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction of reading the data, were most useful in improving objective understanding. Our findings set the stage for developing more intuitive and generally understandable representations of the performance of machine learning models
more »
« less
- PAR ID:
- 10196269
- Date Published:
- Journal Name:
- Proc. ACM Hum.-Comput. Interact.
- Volume:
- 4
- Issue:
- CSCW 2
- Page Range / eLocation ID:
- 153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large matrices arise in many machine learning and data analysis applications, including as representations of datasets, graphs, model weights, and first and second-order derivatives. Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems. The area has reached a certain level of maturity; but recent hardware trends, efforts to incorporate RandNLA algorithms into core numerical libraries, and advances in machine learning, statistics, and random matrix theory, have lead to new theoretical and practical challenges. This article provides a self-contained overview of RandNLA, in light of these developments.more » « less
-
This paper studies the evaluation of learning-based object detection models in conjunction with model-checking of formal specifications defined on an abstract model of an autonomous system and its environment. In particular, we define two metrics – proposition-labeled and class-labeled confusion matrices – for evaluating object detection, and we incorporate these metrics to compute the satisfaction probability of system-level safety requirements. While confusion matrices have been effective for comparative evaluation of classification and object detection models, our framework fills two key gaps. First, we relate the performance of object detection to formal requirements defined over downstream high-level planning tasks. In particular, we provide empirical results that show that the choice of a good object detection algorithm, with respect to formal requirements on the overall system, significantly depends on the downstream planning and control design. Secondly, unlike the traditional confusion matrix, our metrics account for variations in performance with respect to the distance between the ego and the object being detected. We demonstrate this framework on a car-pedestrian example by computing the satisfaction probabilities for safety requirements formalized in Linear Temporal Logic (LTL).more » « less
-
Abstract We investigated human understanding of different network visualizations in a large-scale online experiment. Three types of network visualizations were examined: node-link and two different sorting variants of matrix representations on a representative social network of either 20 or 50 nodes. Understanding of the network was quantified using task time and accuracy metrics on questions that were derived from an established task taxonomy. The sample size in our experiment was more than an order of magnitude larger (N = 600) than in previous research, leading to high statistical power and thus more precise estimation of detailed effects. Specifically, high statistical power allowed us to consider modern interaction capabilities as part of the evaluated visualizations, and to evaluate overall learning rates as well as ambient (implicit) learning. Findings indicate that participant understanding was best for the node-link visualization, with higher accuracy and faster task times than the two matrix visualizations. Analysis of participant learning indicated a large initial difference in task time between the node-link and matrix visualizations, with matrix performance steadily approaching that of the node-link visualization over the course of the experiment. This research is reproducible as the web-based module and results have been made available at: https://osf.io/qct84/ .more » « less
-
null (Ed.)Visualization research and practice that incorporates the arts make claims to being more effective in connecting with users on a human level. However, these claims are difficult to measure quantitatively. In this paper, we present a follow-on study to use close reading, a humanities method from literary studies, to evaluate visualizations created using artistic processes [Bares 2020]. Close reading is a method in literary studies that we've previously explored as a method for evaluating visualizations. To use close reading as an evaluation method, we guide participants through a series of steps designed to prompt them to interpret the visualization's formal, informational, and contextual features. Here we elaborate on our motivations for using close reading as a method to evaluate visualizations, and enumerate the procedures we used in the study to evaluate a 2D visualization, including modifications made because of the COVID-19 pandemic. Key findings of this study include that close reading is an effective formative method to elicit information related to interpretation and critique; user subject position; and suspicion or skepticism. Information gained through close reading is valuable in the visualization design and iteration processes, both related to designing features and other formal elements more effectively, as well as in considering larger questions of context and framing.more » « less
An official website of the United States government

