Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.
more »
« less
Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
Large matrices arise in many machine learning and data analysis applications, including as representations of datasets, graphs, model weights, and first and second-order derivatives. Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems. The area has reached a certain level of maturity; but recent hardware trends, efforts to incorporate RandNLA algorithms into core numerical libraries, and advances in machine learning, statistics, and random matrix theory, have lead to new theoretical and practical challenges. This article provides a self-contained overview of RandNLA, in light of these developments.
more »
« less
- Award ID(s):
- 2338655
- PAR ID:
- 10582035
- Publisher / Repository:
- 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24)
- Date Published:
- ISBN:
- 9798400704901
- Page Range / eLocation ID:
- 6470 to 6479
- Format(s):
- Medium: X
- Location:
- Barcelona Spain
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.more » « less
-
Depending on the node ordering, an adjacency matrix can highlight distinct characteristics of a graph. Deriving a "proper" node ordering is thus a critical step in visualizing a graph as an adjacency matrix. Users often try multiple matrix reorderings using different methods until they find one that meets the analysis goal. However, this trial-and-error approach is laborious and disorganized, which is especially challenging for novices. This paper presents a technique that enables users to effortlessly find a matrix reordering they want. Specifically, we design a generative model that learns a latent space of diverse matrix reorderings of the given graph. We also construct an intuitive user interface from the learned latent space by creating a map of various matrix reorderings. We demonstrate our approach through quantitative and qualitative evaluations of the generated reorderings and learned latent spaces. The results show that our model is capable of learning a latent space of diverse matrix reorderings. Most existing research in this area generally focused on developing algorithms that can compute "better" matrix reorderings for particular circumstances. This paper introduces a fundamentally new approach to matrix visualization of a graph, where a machine learning model learns to generate diverse matrix reorderings of a graph.more » « less
-
Abstract We present a general class of machine learning algorithms called parametric matrix models. In contrast with most existing machine learning models that imitate the biology of neurons, parametric matrix models use matrix equations that emulate physical systems. Similar to how physics problems are usually solved, parametric matrix models learn the governing equations that lead to the desired outputs. Parametric matrix models can be efficiently trained from empirical data, and the equations may use algebraic, differential, or integral relations. While originally designed for scientific computing, we prove that parametric matrix models are universal function approximators that can be applied to general machine learning problems. After introducing the underlying theory, we apply parametric matrix models to a series of different challenges that show their performance for a wide range of problems. For all the challenges tested here, parametric matrix models produce accurate results within an efficient and interpretable computational framework that allows for input feature extrapolation.more » « less
-
Machine learning is rapidly finding its way into the solving of everyday complex problems. One such application is in the area of chaotic encryption, where machine learning techniques can be used to improve the security and synchronization of encryption algorithms. Chaotic encryption is a technique that uses chaos theory to encrypt messages communicated between a transmitter and a receiver, making them extremely difficult to decipher without the correct decryption key. Here, we first discuss error correction for chaotic synchronization using conventional methods with an accuracy of 86%. We then use machine learning algorithms to reduce the error of the decrypted message extracted by learning patterns in the encrypted message and adjusting the encryption parameters accordingly. Using linear regression, k-mean, and DB-Scan, We present an increase in the original accuracy achieved by the decrypted message. Additionally, we use machine learning algorithms to detect anomalies in encrypted messages. The use of machine learning in chaotic encryption has the potential to greatly improve the security of encryption algorithms.more » « less
An official website of the United States government

