skip to main content


Title: Impact of the Emerging Engineering Education Research and Innovation Community
The Engineering Education departments at three large public universities are collaborating on an NSF-funded program to document the impact of the emerging EER&I community. This paper is a report on what has been learned to date. Goals of the program include (1) identifying the broader EER&I network, (2) identifying examples of EER&I impact, (3) organizing and hosting a summit of EER&I leaders to develop a systematic process for documenting the impact of EER&I, (4) piloting the process, and (5) compiling and disseminating best practices. Members of the community have been identified, including many who are conducting engineering education research without being part of a formal engineering education program, and some examples of the impact of engineering education research have been gathered. The summit has been held, and a process for documenting the impact of EER&I has been proposed. Results of the summit include a range of possible metrics that can be used to document EER&I impact and ways to communicate that impact. Some pilots have been conducted at the three collaborating schools and several other sites, and a few institutions are now preparing documentation. Results of the summit and the pilots will be shared. In their pilots, engineering education programs have been able to collect and analyze data that describe their efforts to impact how engineering is taught at the university level. Quantitative metrics include research expenditures, publications, number of graduates, positions graduates hold, faculty leadership in groups that influence engineering education policy, and so on. It has proven to be more difficult to demonstrate a direct causal relationship between those efforts and actual changes in the way engineering is taught in the traditional disciplines. The path to each change seems to be unique, and the most effective way to convey the impact is through telling each individual story. Thus, ongoing work focuses on generating a range of qualitative approaches that can be used to document and analyze these change processes. Collaborators on the NSF program are currently piloting ways to convey those stories to the many audiences interested in the results.  more » « less
Award ID(s):
1736469
NSF-PAR ID:
10196350
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This theory paper describes the development and use of a framework for supporting early career faculty development, especially in competitive National Science Foundation (NSF) CAREER proposals. Engineering Education Research (EER) has developed into a field of expertise and a career pathway over the past three decades. In response to numerous reports in the 1990s and early 2000s, multiple EER graduate programs were established in the mid-2000s and a growing number continue to emerge to educate and train the next generation of EER faculty and policy makers. Historically, many came to EER as individuals trained in other disciplines, but with an interest in improving teaching and learning. This approach created an interdisciplinary space where many could learn the norms, practices, and language of EER, as they became scholars. This history combined with the emergence of EER as a discipline with academic recognition; specific knowledge, frameworks, methodologies, and ways of conducting research; and particular emphasis and goals, creates a tension for building capacity to continue to develop EER and also include engineering education researchers who have not completed PhDs in an engineering education program. If EER is to continue to develop and emerge as a strong and robust discipline with high quality engineering education research, support mechanisms must be developed to both recognize outstanding EER scholars and develop the next generation of researchers in the field. The Five I’s framework comes from a larger project on supporting early career EER faculty in developing NSF CAREER proposals. Arguably, a NSF CAREER award is significant external recognition of EER that signals central membership in the community. The Five I’s were developed using collaborative inquiry, a tool and process to inform practice, with 19 EER CAREER awardees during a retreat in March 2019. The Five I’s include: Ideas, Integration, Impact, Identity, and Infrastructure. Ideas is researchers’ innovative and potentially transformative ideas that can make a significant contribution to EER. All NSF proposals are evaluated using the criteria of intellectual merit and broader impacts, and ideas aligned with these goals are essential for funding success. The integration of research and education is a specific additional consideration of CAREER proposals. Both education and research must inform one another in the proposal process. Demonstrating the impact of research is essential to convey why research should be funded. This impact is essential to address as it directly relates to the NSF criteria of broader impacts as well as why an individual is positioned to carry out that impact. This positioning is tied to identity or the particular research expertise from which a faculty member will be a leader in the field. Finally, infrastructure includes the people and physical resources from which a faculty member must draw to be successful. This framework has proven useful in helping early career faculty evaluate their readiness to apply for an NSF CAREER award or highlight the particular areas of their development that could be improved for future success. 
    more » « less
  2. Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With the support from the National Science Foundation (NSF) Improving Undergraduate STEM Education (IUSE) program, a collaboration of investigators from the University of Connecticut, New Jersey Institute of Technology, University of Pittsburgh, and Rowan University are conducting a mixed-methods project investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. We have conducted preliminary analyses of first-year students’ ethical reasoning and knowledge using the Defining Issues Test 2 (DIT-2), Engineering Ethics Reasoning Instrument (EERI), and concept map assessment to characterize where students “are at” when they come to college, the results of which can be found in past ASEE publications. Additionally, we have developed a suite of ethics-driven classroom games that have been implemented and evaluated across three universities, engaging over 400 first-year engineering students. Now in its third year, we are modifying and (re)designing two of the game- based ethics interventions to (1) more accurately align with the ethical dilemmas in the EERI, (2) allow for more flexibility in modality of how the games are distributed to faculty and students, and (3) provide more variety in terms of the contexts of ethical dilemmas as well as types of dilemmas. As part of the continued development of the game-based ethical interventions, we are piloting a new assessment tool specific for playful learning in engineering ethics and aimed at measuring students ethical reasoning and thought process after they have played the game(s). The past year has provided insight into the potential limitations of the existing methods for measuring changes in ethical reasoning in students, as well as compared changes between first year and senior students. The last year has highlighted the situated or contextual nature of much of the ethical decision making that students do and incorporated both qualitative and quantitative methods. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives. 
    more » « less
  3. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  4. The Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) is a National Science Foundation (NSF) sponsored CubeSat mission distributed across six colleges and universities in the United States. The project has three primary goals: (1) contributing to aeronomy and space weather knowledge, (2) demonstrating novel engineering technology, and (3) advancing higher education. The scientific focus of SWARM-EX is to study the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere (I-T) region. Since the mission consists of three spacecraft operating in a swarm, SWARM-EX will take in-situ measurements of the neutral and ion composition on timescales of less than an orbital period to study the persistence and correlation between different phenomena in the I-T region. The engineering objectives of SWARM-EX are focused on advancing the state of the art in spacecraft formation flying. In addition to being the first passively safe, autonomous formation of more than two spacecraft, SWARM-EX will demonstrate several other key innovations. These include a novel hybrid propulsive/differential drag control scheme and the realization of a distributed aeronomy sensor. As a project selected by the NSF for its broader impacts as well as its intellectual merit, SWARM-EX aims to use CubeSat development as a vehicle for education. The six collaborating institutions have varying levels of CubeSat experience and involve students who range from first-year undergraduates to Ph.D. candidates. These differences in knowledge, as well as the distributed nature of the program, present a tremendous educational opportunity, but also raise challenges such as cross-institutional communication and coordination, document sharing and file management, and hardware development. By detailing its procedures for overcoming these challenges, the SWARM-EX team believes that it may serve as a case study for the coordination of a successful CubeSat program distributed across multiple institutions. 
    more » « less
  5. Funded by the National Science Foundation (NSF) Racial Equity in STEM Education Program, this project aims to deeply interrogate the influence and pervasiveness of Whiteness in engineering culture. While there has been substantial research into the masculinity of engineering, Whiteness has received far less attention. We claim the centrality of Whiteness in engineering curricula informs the culture, climate, and discourse of engineering education, leading to an exclusionary culture within engineering as reflected by the lack of diversity and lower retention of students and faculty of color, and contributes to systemic barriers negatively impacting racial equity. Moving towards racial equity in engineering education requires a fundamental shift in thinking in two important ways: 1) we must reframe how we think about underserved populations from minority to minoritized by a dominant discourse, and 2) to begin to dismantle the impacts of Whiteness, we must first make this barrier visible. In the first year of this project, the diverse team of PIs began to explore scripts of Whiteness in engineering education by conducting a collaborative autoethnography through documenting and analyzing their own experiences facing, enacting, and challenging scripts of Whiteness in engineering spaces. A collaborative autoethnography (CAE) takes a collaborative approach to the process of critical self reflection and can be conducted in many forms, such as such as collecting personal memory data (e.g., journaling), interviewing each other, facilitating intentional dialogue, or observing each other (e.g., in the classroom). CAE is not a linear process, but requires an ongoing dialogue (conversations, negotiations, or even arguments) between researcher team members over a long period (at least months, if not years). Our diverse viewpoints and years-long experience working together facilitated rich conversations that let us interrogate the ways in which Whiteness reveals its form differently depending on one’s positionality. In the later years of the project, we will create a faculty development program intended to help engineering faculty develop their critical consciousness and begin to decenter Whiteness from their ways of thinking and discourses (i.e., beliefs, attitudes, value systems, actions, etc.) so they can begin to critically think about promoting and enacting practices that move engineering education toward racial equity. Although the pathway to critical consciousness is not linear, it is a one-way street; once faculty begin to see the systemic barriers (such as those created by scripts of Whiteness) around them, there is no going back. In the long term, we hope to lay the groundwork for recognizing, interrogating, and eventually dismantling forces of systemic oppression in engineering higher education. 
    more » « less