skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unbiased solar H 2 production with current density up to 23 mA cm −2 by Swiss-cheese black Si coupled with wastewater bioanode
Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H 2 production, which overcomes barriers on anode H 2 O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm −2 ) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoS x catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s −1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m −2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H 2 production practical for the first time.  more » « less
Award ID(s):
1834724
PAR ID:
10196370
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
12
Issue:
3
ISSN:
1754-5692
Page Range / eLocation ID:
1088 to 1099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique ‘‘Swiss-cheese’’ interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time 
    more » « less
  2. Hydrogen evolution is not a spontaneous reaction, so current electrochemical H 2 systems either require an external power supply or use complex photocathodes. We present in this study that by using electrical decoupling, H 2 can be produced spontaneously from wastewater. A power management system (PMS) circuit was deployed to decouple bioanode organic oxidation from abiotic cathode proton reduction in the same electrolyte. The special PMS consisted of a boost converter and an electromagnetic transformer, which harvested energy from the anode followed by voltage magnification from 0.35 V to 2.2–2.5 V, enabling in situ H 2 evolution for over 96 h without consuming any external energy. This proof-of-concept demonstrated a cathode faradaic efficiency of 91.3% and a maximum overall H 2 conversion efficiency of 28.9%. This approach allows true self-sustaining wastewater to H 2 evolution, and the system performance can be improved via the PMS and reactor optimization. 
    more » « less
  3. Solar water splitting using photoelectrochemical cells (PEC's) is a promising pathway toward clean and sustainable storage of renewable energy. Practical realization of solar-driven synthesis of hydrogen and oxygen integrating light absorption and electrolysis of water has been challenging because of (1) the limited stability of good photovoltaic materials under the required electrochemical conditions, and (2) photovoltaic efficiency losses due to light absorption by catalysts, the electrolyte, and generated bubbles, or reflection at their various interfaces. Herein, we evaluate a novel integrated solar water splitting architecture using efficient silicon heterojunction photovoltaic cells that avoids such losses and exhibits a solar-to-hydrogen (STH) efficiency in excess of 10%. Series-connected silicon Heterojunction with Intrinsic Thin layer (HIT) cells generate sufficient photovoltage for unassisted water splitting, with one of the cells acting as the photocathode. Platinum is deposited on the back (dark) junction of this HIT cell as the catalyst for the hydrogen evolution reaction (HER). The photocathode is protected from corrosion by a TiO 2 layer deposited by atomic layer deposition (ALD) interposed between the HIT cell and the Pt, enabling stable operation for >120 hours. Combined with oxygen evolution reaction (OER) catalysts deposited on a porous metal dark anode, these PEC's achieve stable water splitting with a record high STH efficiency for an integrated silicon photosynthesis device. 
    more » « less
  4. Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated. 
    more » « less
  5. Abstract We report a precious‐metal‐free molecular catalyst‐based photocathode that is active for aqueous CO 2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3‐aminopropyl)triethoxysilane linker to p‐type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO 2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of −0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s −1 . To date, this is the only molecular catalyst‐based photoelectrode that is active for the six‐electron reduction of CO 2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p‐type semiconductors and demonstrates state‐of‐the‐art performance for photoelectrochemical CO 2 reduction to CO and methanol. 
    more » « less