skip to main content


Title: Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli
Rubisco catalyses the first step in carbon fixation and is a strategic target to improve photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits and its biogenesis requires multiple chaperones. We optimised a system to produce tobacco Rubisco in Escherichia coli by co-expressing chaperones in auto-induction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics very similar to that of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity than those assembled with other small subunits. Our E. coli expression system will allow probing of features of both subunits of Rubisco that affect its kinetic properties.  more » « less
Award ID(s):
1642386
NSF-PAR ID:
10196388
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Plants
ISSN:
2055-0278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro . RNA tags in the Escherichia coli large ribosomal (50S) subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes. 
    more » « less
  2. The F-ATP synthase, consisting of F 1 and F O motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F 1 (αβ) 3 ring stator contains three catalytic sites. Single-molecule F 1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (β E , empty; β D , ADP bound; β T , ATP-bound). During a power stroke, β E binds ATP (0°–60°) and β D releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes β E upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from β E to β D , which changes catalytic site conformations. In F 1 F O , the membrane-bound F O complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F 1 . Single-molecule studies of F 1 F O embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F 1 -ATPase-driven rotation every 36° (at each c-subunit in the c 10 -ring of E. coli F 1 F O ) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a. 
    more » « less
  3. Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction that occurs in the endoplasmic reticulum of cells during protein synthesis at the ribosome. In the central reaction, a pre-assembled high- mannose sugar is transferred from a lipid-linked donor substrate to the side-chain of an asparagine residue in an -N-X-T/S- sequence (where X is any residue except Proline). This reaction is carried by a membrane-bound multi-subunit enzyme complex, Oligosaccharyltransferase (OST). In humans, genetic defects in OST lead to a group of rare metabolic diseases collectively known as congenital disorders of glycosylation (CDG). Certain mutations are lethal for all organisms. In yeast, the OST is composed of nine non-identical protein subunits. The functional enzyme complex contains eight subunits with either Ost3 or Ost6 at any given time. Ost4, an unusually small protein, plays a very important role in the stabilization of the OST complex. It bridges the catalytic subunit Stt3 with Ost3 (or Ost6) in the Stt3-Ost4-Ost3 (or Ost6) sub-complex. Mutation of any residue from M18-I24 in the trans-membrane helix of yeast Ost4 negatively impacts N-linked glycosylation and the growth of yeast. Indeed, mutation of valine23 to an aspartate impairs OST function in vivo resulting in a lethal phenotype in yeast. To understand the structural mechanism of Ost4 in the stabilization of the enzyme complex, we have initiated a detailed investigation of Ost4 and its functionally important mutant, Ost4V23D. Here, we report the backbone 1H, 13C and 15N resonance assignments for Ost4 and Ost4V23D in DPC micelles. 
    more » « less
  4. The anti-Shine-Dalgarno (ASD) sequence of 16S rRNA is highly conserved across Bacteria, and yet usage of Shine-Dalgarno (SD) sequences in mRNA varies dramatically, depending on the lineage. Here, we compared the effects of ASD mutagenesis in Escherichia coli , a Gammaproteobacteria which commonly employs SD sequences, and Flavobacterium johnsoniae , a Bacteroidia which rarely does. In E. coli , 30S subunits carrying any single substitution at positions 1,535–1,539 confer dominant negative phenotypes, whereas subunits with mutations at positions 1,540–1,542 are sufficient to support cell growth. These data suggest that CCUCC (1,535–1,539) represents the functional core of the element in E. coli . In F. johnsoniae , deletion of three ribosomal RNA ( rrn ) operons slowed growth substantially, a phenotype largely rescued by a plasmid-borne copy of the rrn operon. Using this complementation system, we found that subunits with single mutations at positions 1,535–1,537 are as active as control subunits, in sharp contrast to the E. coli results. Moreover, subunits with quadruple substitution or complete replacement of the ASD retain substantial, albeit reduced, activity. Sedimentation analysis revealed that these mutant subunits are overrepresented in the subunit fractions and underrepresented in polysome fractions, suggesting some defect in 30S biogenesis and/or translation initiation. Nonetheless, our collective data indicate that the ASD plays a much smaller role in F. johnsoniae than in E. coli , consistent with SD usage in the two organisms. 
    more » « less
  5. SUMMARY

    Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast‐encoded Rubisco large subunitrbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation ofrbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations intorbcL within the model plantNicotiana tabacumfacilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild‐typeN. tabacumwith stable point mutations withinrbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco functionin plantawithin tobacco and modification ofrbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast‐encoded genes.

     
    more » « less