skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Multi-Item Mechanisms without Item-Independence: Learnability via Robustness
We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we consider settings where bidders' valuations are drawn from correlated distributions that can be captured by Markov Random Fields or Bayesian Networks -- two of the most prominent graphical models. We establish parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in both models, which scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the size of the largest hyper-edge (for Markov Random Fields). We obtain our learnability results through a novel and modular framework that involves first proving a robustness theorem. We show that, given only "approximate distributions" for bidder valuations, we can learn a mechanism whose revenue is nearly optimal simultaneously for all "true distributions" that are close to the ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our framework directly implies the main result of Gonczarowski and Weinberg. When item values are sampled from more general graphical models, we combine our robustness theorem with novel sample complexity results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under an even weaker distribution distance, the Levy distance.  more » « less
Award ID(s):
1942583
PAR ID:
10196390
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
21st ACM Conference on Economics and Computation
Page Range / eLocation ID:
715 to 761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest. 
    more » « less
  2. We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art. 
    more » « less
  3. We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of $${n}$$ additive bidders whose values for $${m}$$ heterogeneous items are drawn independently. For any such instance and any $${\varepsilon > 0}$$, we show that it is possible to learn an $${\varepsilon}$$-Bayesian Incentive Compatible auction whose expected revenue is within $${\varepsilon}$$ of the optimal $${\varepsilon}$$-BIC auction from only polynomially many samples. Our approach is based on ideas that hold quite generally, and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that aren't necessarily even subadditive, and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well-understood, our corollary for this case extends slightly the state-of-the-art. 
    more » « less
  4. Online pricing has been the focus of extensive research in recent years, particularly in the context of selling an item to sequentially arriving users. However, what if a provider wants to maximize revenue by selling multiple items to multiple users in each round? This presents a complex problem, as the provider must intelligently offer the items to those users who value them the most without exceeding their highest acceptable prices. In this study, we tackle this challenge by designing online algorithms that can efficiently offer and price items while learning user valuations from accept/reject feedback. We focus on three user valuation models (fixed valuations, random experiences, and random valuations) and provide algorithms with nearly-optimal revenue regret guarantees. In particular, for any market setting with N users, M items, and load L (which roughly corresponds to the maximum number of simultaneous allocations possible), our algorithms achieve regret of order O(NMloglog(LT)) under fixed valuations model, O(√NMLT) under random experiences model and O(√NMLT) under random valuations model in T rounds. 
    more » « less
  5. We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable. 
    more » « less