skip to main content


Title: First‐Order Mantle Subduction‐Zone Structure Effects on Ground Motion: The 2016 Mw 7.1 Iniskin and 2018 Mw 7.1 Anchorage Earthquakes
Abstract The 24 January 2016 Iniskin, Alaska earthquake, at Mw 7.1 and 111 km depth, is the largest intermediate‐depth earthquake felt in Alaska, with recorded accelerations reaching 0.2g near Anchorage. Ground motion from the Iniskin earthquake is underpredicted by at least an order of magnitude near Anchorage and the Kenai Peninsula, and is similarly overpredicted in the back‐arc north and west of Cook Inlet. This is in strong contrast to the 30 November 2018 earthquake near Anchorage that was also Mw 7.1 but only 48 km deep. The Anchorage earthquake signals show strong distance decay and are generally well predicted by ground‐motion prediction equations. Smaller intermediate‐depth earthquakes (depth>70  km and 3<M<6.4) with hypocenters near the Iniskin mainshock show similar patterns in ground shaking as the Iniskin earthquake, indicating that the shaking pattern is due to path effects and not the source. The patterns indicate a first‐order role for mantle attenuation in the spatial variability of strong motion. In addition, along‐slab paths appear to be amplified by waveguide effects due to the subduction of crust at >1  Hz; the Anchorage and Kenai regions are particularly susceptible to this amplification due to their fore‐arc position. Both of these effects are absent in the 2018 Anchorage shaking pattern, because that earthquake is shallower and waves largely propagate in the upper‐plate crust. Basin effects are also present locally, but these effects do not explain the first‐order amplitude variations. These analyses show that intermediate‐depth earthquakes can pose a significant shaking hazard, and the pattern of shaking is strongly controlled by mantle structure.  more » « less
Award ID(s):
1829440
NSF-PAR ID:
10196408
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
91
Issue:
1
ISSN:
0895-0695
Page Range / eLocation ID:
85 to 93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Mw 7.1 47 km deep earthquake that occurred on 30 November 2018 had deep societal impacts across southcentral Alaska and exhibited phenomena of broad scientific interest. We document observations that point to future directions of research and hazard mitigation. The rupture mechanism, aftershocks, and deformation of the mainshock are consistent with extension inside the Pacific plate near the down‐dip limit of flat‐slab subduction. Peak ground motions >25%g were observed across more than 8000  km2, though the most violent near‐fault shaking was avoided because the hypocenter was nearly 50 km below the surface. The ground motions show substantial variation, highlighting the influence of regional geology and near‐surface soil conditions. Aftershock activity was vigorous with roughly 300 felt events in the first six months, including two dozen aftershocks exceeding M 4.5. Broad subsidence of up to 5 cm across the region is consistent with the rupture mechanism. The passage of seismic waves and possibly the coseismic subsidence mobilized ground waters, resulting in temporary increases in stream flow. Although there were many failures of natural slopes and soils, the shaking was insufficient to reactivate many of the failures observed during the 1964 M 9.2 earthquake. This is explained by the much shorter duration of shaking as well as the lower amplitude long‐period motions in 2018. The majority of observed soil failures were in anthropogenically placed fill soils. Structural damage is attributed to both the failure of these emplaced soils as well as to the ground motion, which shows some spatial correlation to damage. However, the paucity of instrumental ground‐motion recordings outside of downtown Anchorage makes these comparisons challenging. The earthquake demonstrated the challenge of issuing tsunami warnings in complex coastal geographies and highlights the need for a targeted tsunami hazard evaluation of the region. The event also demonstrates the challenge of estimating the probabilistic hazard posed by intraslab earthquakes. 
    more » « less
  2. null (Ed.)
    Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5  s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals are analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses. 
    more » « less
  3. null (Ed.)
    Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region. 
    more » « less
  4. The 2018 Mw7.1 Anchorage, Alaska, earthquake is one of the largest earthquakes to strike near a major US city since the 1994 Northridge earthquake. The significance of this event motivated reconnaissance efforts to thoroughly document damage to the built environment. This article presents the spatial variability of ground motion intensity and its correlation with subsurface conditions in Anchorage, the identification of liquefaction triggering in the absence of surficial manifestations (such as sand boils or sediment ejecta), cyclic softening failure in organic soils, and the poor performance of anthropogenic fills subjected to cyclic loading. In addition to lessons from observed ground deformation and geotechnical effects on structures, this article provides case studies documenting the satisfactory behavior of improved ground subjected to cyclic loading and the appropriateness of current design procedures for the estimation of seismically induced sliding displacements of mechanically stabilized earth walls.

     
    more » « less
  5. Abstract

    We analyze seismograms recorded by four arrays (B1–B4) with 100 m station spacing and apertures of 4–8 km that cross the surface rupture of the 2019 Mw 7.1 Ridgecrest earthquake. The arrays extend from B1 in the northwest to B4 in the southeast of the surface rupture. Delay times betweenPwave arrivals associated with ∼1,200 local earthquakes and four teleseismic events are used to estimate local velocity variations beneath the arrays. Both teleseismic and localPwaves travel faster on the northeast than the southwest side of the fault beneath arrays B1 and B4, but the velocity contrast is less reliably resolved at arrays B2 and B3. We identify several 1–2 km wide low‐velocity zones with much slower inner cores that amplifySwaveforms, inferred as damage zones, beneath each array. The damage zones at arrays B2 and B4 also generate fault‐zone head and trapped waves. An automated detector, based on peak ground velocities and durations of high‐amplitude waves, identifies candidate fault‐zone trapped waves (FZTWs) in a localized zone for ∼600 earthquakes at array B4. Synthetic waveform modeling of averaged FZTWs, generated by ∼30 events with high‐quality signals, indicates that the trapping structure at array B4 has a width of ∼300 m, depth of 3–5 km,Swave velocity reduction of ∼20% with respect to the surrounding rock,Q‐value of ∼30, andSwave velocity contrast of ∼4% across the fault (faster on the northeast side). The results show complex fault‐zone internal structures (velocity contrasts and low‐velocity zones) that vary along fault strike.

     
    more » « less