skip to main content


Search for: All records

Award ID contains: 1829440

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An oceanic plateau, the Yakutat terrane, has entered the subduction system across southcentral Alaska. Its down‐dip fate and relationship to overlying volcanism is still debated. Broadband seismometers from the Wrangell Volcanism and Lithospheric Fate (WVLF) temporary experiment were deployed with <20 km spacing across southcentral Alaska to study this region. An array‐based deconvolution procedure is used to isolate the scatteredPandScoda of teleseismicPwaves for imaging discontinuity structure. This procedure is applied to WVLF and other dense seismic arrays across southcentral Alaska in a manner that accounts for near‐surface wavespeed variations. Two imaging techniques are employed: two‐dimensional migration and three‐dimensional common‐conversion‐point (CCP) stacking. Migrating the scattered phases along WVLF stations shows the ∼18 ± 4 km thick Yakutat crust subducting beneath the Wrangell Volcanic field to the NNE. It is offset from the Alaska‐Aleutian seismic zone laterally by 250 km to the southeast at 100 km depth, and dips more steeply (45°). At depths <45 km, CCP stacking reveals that the Yakutat crust is continuous for over 450 km along strike. This shallow continuity and deeper offset suggest a tear in the subducting Yakutat slab at depths >45 km, around 146°W. CCP stacking also reveals a continuous thin low‐velocity layer atop the underthrust Yakutat crust for >450 km along strike, at all depths <35 km. The uniform low‐velocity thrust zone indicates consistent properties through multiple rupture‐zone segments, showing that low‐velocity channels generally correspond with subduction megathrusts.

     
    more » « less
  2. Abstract

    Shear‐wave splitting observations can provide insight into mantle flow, due to the link between the deformation of mantle rocks and their direction‐dependent seismic wave velocities. We identify anisotropy in the Cook Inlet segment of the Alaska subduction zone by analyzing splitting parameters of S waves from local intraslab earthquakes between 50 and 200 km depths, recorded from 2015–2017 and emphasizing stations from the Southern Alaska Lithosphere and Mantle Observation Network experiment. We classify 678 high‐quality local shear‐wave splitting observations into four regions, from northwest to southeast: (L1b) splitting measurements parallel to Pacific plate motion, (L1a) arc‐perpendicular splitting pattern, (L2) sharp transition to arc‐parallel splitting, and (L3) splitting parallel to Pacific plate motion. Forward modeling of splitting from various mantle fabrics shows that no one simple model fully explains the observed splitting patterns. An A‐type olivine fabric with fast direction dipping 45° to the northwest (300°)—aligned with the dipping slab—predicts fast directions that fit L1a observations well, but not L2. The inability of the forward model fabrics to fit all the observed splitting patterns suggests that the anisotropy variations are not due to variable ray angles, but require distinct differences in the anisotropy regime below the arc, forearc, and subducting plate.

     
    more » « less
  3. Abstract

    Seismic deployments in the Alaska subduction zone provide dense sampling of the seismic wavefield that constrains thermal structure and subduction geometry. We measurePandSattenuation from pairwise amplitude and phase spectral ratios for teleseismic body waves at 206 stations from regional and short‐term arrays. Parallel teleseismic travel‐time measurements provide information on seismic velocities at the same scale. These data show consistently low attenuation over the forearc of subduction systems and high attenuation over the arc and backarc, similar to local‐earthquake attenuation studies but at 10× lower frequencies. The pattern is seen both across the area of normal Pacific subduction in Cook Inlet, and across the Wrangell Volcanic Field where subduction has been debated. These observations confirm subduction‐dominated thermal regime beneath the latter. Travel times show evidence for subducting lithosphere much deeper than seismicity, while attenuation measurements appear mostly reflective of mantle temperature less than 150 km deep, depths where the mantle is closest to its solidus and where subduction‐related melting may take place. Travel times show strong delays over thick sedimentary basins. Attenuation signals show no evidence of absorption by basins, although some basins show signals anomalously rich in high‐frequency energy, with consequent negative apparent attenuation. Outside of basins, these data are consistent with mantle attenuation in the upper 220 km that is quantitatively similar to observations from surface waves and local‐earthquake body waves. Differences betweenPandSattenuation suggest primarily shear‐modulus relaxation. Overall the attenuation measurements show consistent, coherent subduction‐related structure, complementary to travel times.

     
    more » « less
  4. Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100  km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models. 
    more » « less
  5. Abstract The 24 January 2016 Iniskin, Alaska earthquake, at Mw 7.1 and 111 km depth, is the largest intermediate‐depth earthquake felt in Alaska, with recorded accelerations reaching 0.2g near Anchorage. Ground motion from the Iniskin earthquake is underpredicted by at least an order of magnitude near Anchorage and the Kenai Peninsula, and is similarly overpredicted in the back‐arc north and west of Cook Inlet. This is in strong contrast to the 30 November 2018 earthquake near Anchorage that was also Mw 7.1 but only 48 km deep. The Anchorage earthquake signals show strong distance decay and are generally well predicted by ground‐motion prediction equations. Smaller intermediate‐depth earthquakes (depth>70  km and 3<M<6.4) with hypocenters near the Iniskin mainshock show similar patterns in ground shaking as the Iniskin earthquake, indicating that the shaking pattern is due to path effects and not the source. The patterns indicate a first‐order role for mantle attenuation in the spatial variability of strong motion. In addition, along‐slab paths appear to be amplified by waveguide effects due to the subduction of crust at >1  Hz; the Anchorage and Kenai regions are particularly susceptible to this amplification due to their fore‐arc position. Both of these effects are absent in the 2018 Anchorage shaking pattern, because that earthquake is shallower and waves largely propagate in the upper‐plate crust. Basin effects are also present locally, but these effects do not explain the first‐order amplitude variations. These analyses show that intermediate‐depth earthquakes can pose a significant shaking hazard, and the pattern of shaking is strongly controlled by mantle structure. 
    more » « less