Precise estimation of treatment effects is crucial for accurately evaluating the intervention. While deep learning models have exhibited promising performance in learning counterfactual representations for treatment effect estimation (TEE), a major limitation in most of these models is that they often overlook the diversity of treatment effects across potential subgroups that have varying treatment effects and characteristics, treating the entire population as a homogeneous group. This limitation restricts the ability to precisely estimate treatment effects and provide targeted treatment recommendations. In this paper, we propose a novel treatment effect estimation model, named SubgroupTE, which incorporates subgroup identification in TEE. SubgroupTE identifies heterogeneous subgroups with different responses and more precisely estimates treatment effects by considering subgroup-specific treatment effects in the estimation process. In addition, we introduce an expectation–maximization (EM)-based training process that iteratively optimizes estimation and subgrouping networks to improve both estimation and subgroup identification. Comprehensive experiments on the synthetic and semi-synthetic datasets demonstrate the outstanding performance of SubgroupTE compared to the existing works for treatment effect estimation and subgrouping models. Additionally, a real-world study demonstrates the capabilities of SubgroupTE in enhancing targeted treatment recommendations for patients with opioid use disorder (OUD) by incorporating subgroup identification with treatment effect estimation. 
                        more » 
                        « less   
                    
                            
                            Exploration of Heterogeneous Treatment Effects via Concave Fusion
                        
                    
    
            Abstract Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1712558
- PAR ID:
- 10196535
- Date Published:
- Journal Name:
- The International Journal of Biostatistics
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1557-4679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            There has been growing research interest in developing methodology to evaluate healthcare centers' performance with respect to patient outcomes. Conventional assessments can be conducted using fixed or random effects models, as seen in provider profiling. We propose a new method, using fusion penalty to cluster healthcare centers with respect to a survival outcome. Without any prior knowledge of the grouping information, the new method provides a desirable data‐driven approach for automatically clustering healthcare centers into distinct groups based on their performance. An efficient alternating direction method of multipliers algorithm is developed to implement the proposed method. The validity of our approach is demonstrated through simulation studies, and its practical application is illustrated by analyzing data from the national kidney transplant registry.more » « less
- 
            ABSTRACT Individualized modeling has become increasingly popular in recent years with its growing application in fields such as personalized medicine and mobile health studies. With rich longitudinal measurements, it is of great interest to model certain subject‐specific time‐varying covariate effects. In this paper, we propose an individualized time‐varying nonparametric model by leveraging the subgroup information from the population. The proposed method approximates the time‐varying covariate effect using nonparametric B‐splines and aggregates the estimated nonparametric coefficients that share common patterns. Moreover, the proposed method can effectively handle various missing data patterns that frequently arise in mobile health data. Specifically, our method achieves subgrouping by flexibly accommodating varying dimensions of B‐spline coefficients due to missingness. This capability sets it apart from other fusion‐type approaches for subgrouping. The subgroup information can also potentially provide meaningful insight into the characteristics of subjects and assist in recommending an effective treatment or intervention. An efficient ADMM algorithm is developed for implementation. Our numerical studies and application to mobile health data on monitoring pregnant women's deep sleep and physical activities demonstrate that the proposed method achieves better performance compared to other existing methods.more » « less
- 
            Abstract Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.more » « less
- 
            Abstract The ability to predict individualized treatment effects (ITEs) based on a given patient's profile is essential for personalized medicine. We propose a hypothesis testing approach to choosing between two potential treatments for a given individual in the framework of high-dimensional linear models. The methodological novelty lies in the construction of a debiased estimator of the ITE and establishment of its asymptotic normality uniformly for an arbitrary future high-dimensional observation, while the existing methods can only handle certain specific forms of observations. We introduce a testing procedure with the type I error controlled and establish its asymptotic power. The proposed method can be extended to making inference for general linear contrasts, including both the average treatment effect and outcome prediction. We introduce the optimality framework for hypothesis testing from both the minimaxity and adaptivity perspectives and establish the optimality of the proposed procedure. An extension to high-dimensional approximate linear models is also considered. The finite sample performance of the procedure is demonstrated in simulation studies and further illustrated through an analysis of electronic health records data from patients with rheumatoid arthritis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    