skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaffolding pedagogical change: Professional development to support elementary teachers in implementing mobile maker kits
The purpose of this paper is to describe findings from a study in which we investigated a gradual increase of responsibility model to scaffold a 1st and a 3rd grade teacher as they integrated interdisciplinary, standards-based Mobile Maker Kits into their classrooms over the course of an academic year. Qualitative discourse and multimodal analysis techniques were used to investigate teacher practices and beliefs related to the integration of the kits, which included lesson plans linking all activities and materials (e.g., picture books, craft materials, tablets, 3D printers, circuits and other electronic materials) to ELA, science, math, and social studies standards. Findings identify the affordances and constraints of a gradual increase of responsibility model for supporting teachers. We conclude by offering implications for supporting the integration of Making practices into P-12 classrooms.  more » « less
Award ID(s):
1723661
PAR ID:
10196668
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Society for Information Technology & Teacher Education International Conference 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the increasing attention to infusing CT into middle and high school content area classrooms, there is a lack of information about the most effective practices and models to support teachers in their efforts to integrate disciplinary content and CT principles. To address this need, this paper proposes the Code, Connect and Create (3C) professional development (PD) model, which was designed to support middle and high school content area teachers in infusing computational thinking into their classrooms. To evaluate the model, we analyzed quantitative and qualitative data collected from Infusing Computing PD workshops designed for in-service science, math, English language arts, and social studies teachers located in two Southeastern states. Drawing on findings from our analysis of teacher-created learning segments, surveys, and interviews, we argue that the 3C professional development model supported shifts in teacher understandings of the role of computational thinking in content area classrooms, as well as their self-efficacy and beliefs regarding CT integration into disciplinary content. We conclude by offering implications for the use of this model to increase teacher and student access to computational thinking practices in middle and high school classrooms. 
    more » « less
  2. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less
  3. This paper presents findings from a qualitative study of eleven experienced STEM educators who worked alongside developers to design and implement data-rich lessons in their grades 6–9 mathematics and science classrooms. In the context of a project that seeks to develop professional learning for data fluency, researchers documented the co-development process to articulate a model of what teachers need to know and be able to do in order to support their students’ data fluency. The project team distilled key findings into two framing documents: 1) a description of high-leverage areas of focus for PL which highlight challenges faced by teachers, which are common, important for data fluency, and represent opportunities for supporting teacher and student growth; and 2) a logic model that describes how the PL course under development is expected to influence teacher, classroom, and student outcomes. This paper contributes to the larger education community by defining the professional learning needs of educators who wish to integrate data into their STEM classrooms. These frameworks provide designers and researchers with touchpoints to structure and study PL experiences, lesson materials, and other classroom resources for both new and veteran educators. These tools can provide STEM teachers with guidance for reflecting on their current knowledge, skills, beliefs, and teaching practices that help their students become more data fluent. 
    more » « less
  4. National and many state standards require elementary teachers to teach engineering in their classrooms. However, incorporating engineering into elementary engineering classrooms has not been a standard practice, thus emphasizing the need for teachers to be provided with training, resources, and support for the vision of instruction described in the standards to become a reality. Administrators are responsible for making decisions regarding teacher training and support. In response, we explored the perceptions of division and building-level administrators throughout Virginia regarding the current state of elementary engineering education and what they perceive as barriers to their teachers engaging students in lessons that incorporate engineering practices. Our data comes from 11 questions from a multiple-choice and open-ended response survey, which was analyzed using a mixed-method approach. Findings describe incoherence between what administrators perceive as the current state of engineering education, the barriers to teachers engaging their students in engineering, and what supports are being provided to teachers. These findings have implications for professional development design and implementation. 
    more » « less
  5. In this paper, we explore how standards-based Making activities offer opportunities for teachers to address interdisciplinary concepts and encourage students to tinker, collaborate, create, and design. This qualitative study draws on results from a two-year, NSF-funded research project that involved the integration of standards-based Mobile Maker Kits into 15 elementary schools within a suburban-rural Southern school district. Specifically, we examine teachers’ goals for using Mobile Maker Kits, as well as how the hook, brainstorm, prototype, share, synthesize framework supported them in integrating Making into their existing standards and curricula. 
    more » « less