skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Code, Connect, Create: The 3C Professional Development Model to Support Computational Thinking Infusion
Despite the increasing attention to infusing CT into middle and high school content area classrooms, there is a lack of information about the most effective practices and models to support teachers in their efforts to integrate disciplinary content and CT principles. To address this need, this paper proposes the Code, Connect and Create (3C) professional development (PD) model, which was designed to support middle and high school content area teachers in infusing computational thinking into their classrooms. To evaluate the model, we analyzed quantitative and qualitative data collected from Infusing Computing PD workshops designed for in-service science, math, English language arts, and social studies teachers located in two Southeastern states. Drawing on findings from our analysis of teacher-created learning segments, surveys, and interviews, we argue that the 3C professional development model supported shifts in teacher understandings of the role of computational thinking in content area classrooms, as well as their self-efficacy and beliefs regarding CT integration into disciplinary content. We conclude by offering implications for the use of this model to increase teacher and student access to computational thinking practices in middle and high school classrooms.  more » « less
Award ID(s):
1742332
PAR ID:
10189510
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
SIGCSE '20: Proceedings of the 51st ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
971 to 977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  2. This article describes the Infusing Computing project, a 4-year study designed to support middle and high school teachers in infusing computational thinking (CT) into their disciplinary teaching. Due to the COVID-19 pandemic, weeklong workshops held in summer 2020 were shifted to a virtual format and utilized emerging technology tools, synchronous and asynchronous sessions, explicit collaborative scaffolds, networking, and digital badging. Specifically, this study examined the experiences of English language arts (ELA) teachers (14 middle school, 13 high school) who participated in the virtual Infusing Computing workshops. Findings demonstrated that ELA teachers were able to leverage learning successfully from virtual PD to infuse CT into existing curricula, although teachers differed in the ways that they appropriated and adapted pedagogical tools for CT infusion. 
    more » « less
  3. The purpose of this paper is to explain how we adapted our novel 3C PD Model (Code, Connect, and Create) for teacher professional development (PD) around computational thinking (CT) integration for elementary teachers. We will share PD design choices that support early childhood and elementary teachers in learning about CT knowledge, skills, and dispositions and making content connections to CT. We will also detail how we have helped teachers begin planning for CT-integrated lesson implementation. We will share empirical data from a post-PD survey that includes teacher reflections on their participation in the 3C PD Model. We conclude by making recommendations and offering implications for PK-5 PD providers that aim to increase teachers’ pedagogical content knowledge (PCK) around CT and integration. 
    more » « less
  4. Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research. 
    more » « less
  5. This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less