skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Thermal Interface Conductance to Graphene Using Ni− Pd Alloy Contacts
To identify superior thermal contacts to graphene, we implement a high-throughput methodology that systematically explores the Ni−Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on thermal interface conductance with monolayer graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni−Pd/Cr/graphene/ SiO2 samples identify a maximum metal/graphene/SiO2 junction thermal interface conductance of 114 ± (39, 25) MW/m2 K and 113 ± (33, 22) MW/m2 K at ∼10 at. % Pd in Ninearly double the highest reported value for pure metals and 3 times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates with a region of the Ni−Pd phase diagram that exhibits a miscibility gap. Cross-sectional imaging by high-resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to two-dimensional materials for next-generation devices.  more » « less
Award ID(s):
1566228
PAR ID:
10196705
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
12
ISSN:
1944-8244
Page Range / eLocation ID:
34317-34322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To identify superior thermal contacts to graphene we implement a high throughput methodology that systematically explores the Ni-Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on the thermal interface conductance with monolayer CVD graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni- Pd/Cr/graphene/SiO2 samples both identify a maximum in the metal/graphene/SiO2 junction thermal interface conductance of 114± (39, 25) MW/m2K and 113± (33, 22) MW/m2K at ~10 atomic percent Pd in Ni—nearly double the highest reported value for pure metals and three times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates to a region of the Ni-Pd phase diagram that exhibits a miscibility gap. Cross sectional imaging by high resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to 2D materials for next generation devices. 
    more » « less
  2. Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a AgxPd1−x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2 −D2 exchange kinetics were measured at atmospheric pressure on AgxPd1−x catalysts over a temperature range of 333−593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from −6.2 eV for pure Ag to −3.4 eV for pure Pd. At all reaction conditions, the H2 −D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with xPd < 0.58. Measured H2 −D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H′) mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔEads ‡ , associative desorption, ΔEdes ‡ , and the surface-to-subsurface diffusion energy, ΔEss, as a function of alloy composition, xPd. The 2H′ mechanism predicts ΔEads ‡ = 0−10 kJ/mol, ΔEdes ‡ = 30−65 kJ/mol, and ΔEss = 20−30 kJ/mol for all alloy compositions with xPd ≥ 0.64, including for the pure Pd catalyst (i.e., xPd = 1). For these Pd-rich catalysts, ΔEdes ‡ and ΔEss appeared to increase by ∼5 kJ/mol with decreasing xPd. However, due to the coupling of kinetic parameters in the 2H′ mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when xPd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2 −D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing xPd can be explained by a reduction in the availability of surface Pd at high Ag compositions. 
    more » « less
  3. Abstract Elemental partitioning during thermal processing can significantly affect the corrosion resistance of bulk alloys operating in aggressive electrochemical environments, for which, despite decades of experimental and theoretical studies, the thermodynamic and electrochemical mechanisms still lack accurate quantitative descriptions. Here, we formulate an ab initio thermodynamic model to obtain the composition- and temperature-dependent free energies of formation (ΔfG) for Ni–Cr alloys, a prototypical group of corrosion-resistant metals, and discover two equilibrium states that produce the driving forces for the elemental partitioning in Ni–Cr. The results are in quantitative agreement with the experimental studies on the thermodynamic stability of Ni–Cr. We further construct electrochemical (potential–pH) diagrams by obtaining the required ΔfGvalues of native oxides and (oxy)hydroxides using high-fidelity ab-initio calculations that include exact electronic exchange and phononic contributions. We then analyze the passivation and electrochemical trends of Ni–Cr alloys, which closely explain various oxide-film growth and corrosion behaviors observed on alloy surfaces. We finally determine the optimal Cr content range of 14–34 at%, which provides the Ni–Cr alloys with both the preferred heat-treatment stability and superior corrosion resistance. We conclude by discussing the consequences of these findings on other Ni–Cr alloys with more complex additives, which can guide the further optimization of industrial Ni–Cr-based alloys. 
    more » « less
  4. Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are essential components in modern radio frequency power amplifiers. In order to improve both the device electrical and thermal performance (e.g., higher current density operation and better heat dissipation), researchers are introducing AlN into the GaN HEMT structure. The knowledge of thermal properties of the constituent layers, substrates, and interfaces is crucial for designing and optimizing GaN HEMTs that incorporate AlN into the device structure as the barrier layer, buffer layer, and/or the substrate material. This study employs a multi-frequency/spot-size time-domain thermoreflectance approach to measure the anisotropic thermal conductivity of (i) AlN and GaN epitaxial films, (ii) AlN and SiC substrates, and (iii) the thermal boundary conductance for GaN/AlN, AlN/SiC, and GaN/SiC interfaces (as a function of temperature) by characterizing GaN-on-SiC, GaN-on-AlN, and AlN-on-SiC epitaxial wafers. The thermal conductivity of both AlN and GaN films exhibits an anisotropy ratio of ∼1.3, where the in-plane thermal conductivity of a ∼1.35 μm thick high quality GaN layer (∼223 W m−1 K−1) is comparable to that of bulk GaN. A ∼1 μm thick AlN film grown by metalorganic chemical vapor deposition possesses a higher thermal conductivity than a thicker (∼1.4 μm) GaN film. The thermal boundary conductance values for a GaN/AlN interface (∼490 MW m-2 K−1) and AlN/SiC interface (∼470 MW m−2 K−1) are found to be higher than that of a GaN/SiC interface (∼305 MW m−2 K−1). This work provides thermophysical property data that are essential for optimizing the thermal design of AlN-incorporated GaN HEMT devices. 
    more » « less
  5. Creep strength in polycrystalline Ni-based superalloys is influenced by the formation of a rich variety of planar faults forming within the strengthening γ' phase. The lengthening and thickening rate of these faults – and therefore the creep rate – depends on an intriguing combination of dislocation interactions at the γ/γ' interface and diffusional processes of the alloying elements at the core of the fault tip. The effect of alloy composition on this process is not fully understood. In this work we use correlative high resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy to study the deformation faults in two different Ni-based superalloys with carefully designed ratios of disordering-to-ordering-promoting elements (Co-Cr against Nb-Ta-Ti). The results show that the additions of ordering-promoting elements reduce the diffusional processes required for the faults to lengthen and thicken thus reducing the creep rates found for the higher Nb-Ta-Ti alloy. These insights provide a path to follow in the design of improved grades of creep-resistant polycrystalline alloys beyond 700 °C. 
    more » « less