skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy distribution and adiabatic guiding of a solid-neon-moderated positron beam
Slow positrons are generated from a 22Na source and cone-shaped solid neon moderator and extracted as a magnetically guided beam. Measurements are presented for the mean parallel and perpendicular energies and the radial distribution of the beam particles. Over a distance of 7 m, where the magnetic field B varies from 0.005 to 0.12 T, the beam transport is found to be adiabatic for mean energies up to 50 eV. Non-adiabatic effects, evidenced by an increase in energy in motion perpendicular to B, are observed at larger transport energies. The implications of these observations for buffer-gas positron traps and other positron-transport beamlines are discussed.  more » « less
Award ID(s):
1702230
PAR ID:
10196730
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics B: Atomic, Molecular and Optical Physics
Volume:
53
ISSN:
0953-4075
Page Range / eLocation ID:
085701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-photon ionization thresholds of RuB, RhB, OsB, IrB, and PtB have been measured using resonant two-photon ionization spectroscopy in a jet-cooled molecular beam and have been used to derive the adiabatic ionization energies of these molecules. From the measured two-photon ionization thresholds, IE(RuB) = 7.879(9) eV, IE(RhB) = 8.234(10) eV, IE(OsB) = 7.955(9) eV, IE(IrB) = 8.301(15) eV, and IE(PtB) = 8.524(10) eV have been assigned. By employing a thermochemical cycle, cationic bond dissociation energies of these molecules have also been derived, giving D0(Ru+–B) = 4.297(9) eV, D0(Rh+–B) = 4.477(10) eV, D0(Os–B+) = 4.721(9) eV, D0(Ir–B+) = 4.925(18) eV, and D0(Pt–B+) = 5.009(10) eV. The electronic structures of the resulting cationic transition metal monoborides (MB+) have been elucidated using quantum chemical calculations. Periodic trends of the MB+ molecules and comparisons to their neutral counterparts are discussed. The possibility of quadruple chemical bonds in all of these cationic transition metal monoborides is also discussed. 
    more » « less
  2. We have discovered that 5 keV bursts of 5 × 107 positrons with an initial longitudinal spin polarization of (28.8 ± 0.7)%, when implanted into a thin Ni(100) crystal, are emitted with 20% efficiency at thermal energies from its surface with (30.9 ± 0.5)% polarization. We conclude that the positron spin polarization is preserved while interacting with the Ni, despite the 0.61 T average transverse magnetization of the Ni at room temperature. The resulting polarized beam has been focused to a 0.025-mm mean-diameter spot when accelerated to 5 keV and will be uniquely suited for experiments on a neutral spin aligned e+-e − plasma, spin- and angle-resolved positronium emission spectroscopy, and critical for producing a triplet positronium Bose-Einstein condensate. 
    more » « less
  3. Plasma wakefield acceleration in the nonlinear blowout regime has achieved marked milestones in electron beam acceleration, demonstrating high acceleration gradients and energy efficiency while preserving excellent beam quality. However, this regime is deemed unsuitable for achieving positron acceleration of comparable results, which is vital for future compact electron–positron colliders. In this article, we find that an intense positron beam loaded at the back of beam-driven blowout cavity can self-consistently induce the focusing field and flatten the longitudinal wakefield, leading to stable, high-efficiency, and high-quality positron acceleration. This is achieved through the formation of an on-axis electron filament induced by positron beam load, which shapes the plasma wakefield in a distinct way compared to electron beam load in the blowout regime. Via a nonlinear analytic model and numerical simulations, we explain the novel beam loading effects of the interaction between the on-axis filament and the blowout cavity. High-fidelity simulations show that a high-charge positron beam can be accelerated with >20% energy transfer efficiency, ~1% energy spread, and ~1 mm·mrad normalized emittance, while considerably depleting the energy of the drive beam. The concept can also be extended to simultaneous acceleration of electron and positron beams and high transformer ratio positron acceleration as well. This development offers a new route for the application of plasma wakefield acceleration into particle physics. 
    more » « less
  4. The ideal Chew–Goldberger–Low (CGL) plasma equations, including the double adiabatic conservation laws for the parallel ( $$p_\parallel$$ ) and perpendicular pressure ( $$p_\perp$$ ), are investigated using a Lagrangian variational principle. An Euler–Poincaré variational principle is developed and the non-canonical Poisson bracket is obtained, in which the non-canonical variables consist of the mass flux $${\boldsymbol {M}}$$ , the density $$\rho$$ , the entropy variable $$\sigma =\rho S$$ and the magnetic induction $${\boldsymbol {B}}$$ . Conservation laws of the CGL plasma equations are derived via Noether's theorem. The Galilean group leads to conservation of energy, momentum, centre of mass and angular momentum. Cross-helicity conservation arises from a fluid relabelling symmetry, and is local or non-local depending on whether the gradient of $$S$$ is perpendicular to $${\boldsymbol {B}}$$ or otherwise. The point Lie symmetries of the CGL system are shown to comprise the Galilean transformations and scalings. 
    more » « less
  5. Abstract The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsars and their nebulae can significantly contribute to the excess of the AMS-02 positron flux has been consolidated after the observation of aγ-ray emission at GeV and TeV energies of a few degree size around a few sources, that provide indirect evidence that electron and positron pairs are accelerated to very high energies from these sources.By modeling the emission from pulsars in the ATNF catalog, we find that combinations of positron emission from cataloged pulsars and secondary production can fit the observed AMS-02 data. Our results show that a small number of nearby, middle-aged pulsars, particularly B1055-52, Geminga (J0633+1746), and Monogem (B0656+14), dominate the positron emission, contributing up to 80% of the flux at energies above 100 GeV. From the fit to the data, we obtain a list of the most important sources for which we recommend multi-wavelength follow-up observations, particularly in theγ-ray and X-ray bands, to further constrain the injection and diffusion properties of positrons. 
    more » « less