skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Long‐Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit
Abstract Surface charging by keV (kiloelectron Volt) electrons can pose a serious risk for satellites. There is a need for physical models with the correct and validated dynamical behavior. The 18.5‐month (2013–2015) output from the continuous operation online in real time as a nowcast of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) is compared to the GOES 13 MAGnetospheric Electron Detector (MAGED) data for 40, 75, and 150 keV energies. The observed and modeled electron fluxes were organized by Magnetic Local Time (MLT) and IMPTAM driving parameters; the observed Interplanetary Magnetic Field (IMF)BZ,BY, and |B|; the solar wind speedVSW; the dynamic pressurePSW; andKpandSYM‐Hindices. The peaks for modeled fluxes are shifted toward midnight, but the ratio between the observed and modeled fluxes at around 06 MLT is close to 1. All the statistical patterns exhibit very similar features with the largest differences of about 1 order of magnitude at 18–24 MLT. Based on binary event analysis, 20–78% of threshold crossings are reproduced, but Heidke skill scores are low. The modeled fluxes are off by a factor of 2 in terms of the median symmetric accuracy. The direction of the error varies with energy: overprediction by 50% for 40 keV, overprediction by 2 for 75 keV, and underprediction by 18% for 150 keV. The revealed discrepancies are due to the boundary conditions developed for ions but used for electrons, absence of substorm effects, representations of electric and magnetic fields which can result in not enough adiabatic acceleration, and simple models for electron lifetimes.  more » « less
Award ID(s):
1663770
PAR ID:
10375102
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
17
Issue:
5
ISSN:
1542-7390
Page Range / eLocation ID:
p. 687-708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Utilizing observations from the Electron Losses and Fields Investigation satellites, we present a statistical study of ∼2,000 events in 2019–2020 characterizing the occurrence in magnetic local time (MLT) and latitude of ≥50 keV electron isotropy boundaries (IBs) and associated electron precipitation. The isotropy boundary of an electron of a given energy is the magnetic latitude poleward of which persistent isotropized pitch angle distributions (Jprec/Jperp∼ 1) are first observed to occur, interpreted as resulting from magnetic field‐line curvature scattering in the equatorial magnetosphere. We find that energetic electron IBs can be well‐recognized on the nightside from dusk until dawn, under all geomagnetic activity conditions, with a peak occurrence rate of almost 90% near ∼22 hr in MLT, remaining above 80% from 21 to 01 MLT. The observed IBs span International Geophysical Reference Field (IGRF) magnetic latitudes of 60°–74° with a maximum occurrence between 66° and 71° (Lof 6–8), trending toward lower latitudes and premidnight local times with activity. The precipitating energy flux of ≥50 keV electrons averaged over the IB‐associated latitudes varies over four orders of magnitude, up to 1 erg/cm2‐s, and often includes wide‐energy electron spectra exceeding 1 MeV. The IB‐associated energies and precipitating fluxes also exhibit peak values near midnight for low activity, shifting toward premidnight for elevated activity. The average total precipitating power deposited over the high‐latitude nightside atmosphere (55°–80°; IGRFL ≥ 3) attributed to IBs is 10%–20%, or 10 MW, but at times can approach 100% of the total ≥50 keV electron energy deposition over the entire subauroral and auroral zone region, exceeding 1 GW. 
    more » « less
  2. Abstract Using 5‐year of measurements from Van Allen Probes, we present a survey of the statistical dependence of the Earth's outer radiation belt electron flux dropouts during geomagnetic storms on electron energy and various driving parameters including interplanetary magnetic field Bz, PSW, SYM‐H, and AE. By systematically investigating the dropouts over energies of 1 keV–10 MeV at L‐shells spanning 4.0–6.5, we find that the dropouts are naturally divided into three regions. The dropouts show much higher occurrence rates at energies below ∼100 keV and above ∼1 MeV compared to much smaller occurrence rate at intermediate energies around hundreds of keV. The flux decays more dramatically at energies above ∼1 MeV compared to the energies below ∼100 keV. The flux dropouts of electrons below ∼100 keV strongly depend on magnetic local time (MLT), which demonstrate high occurrence rates on the nightside (18–06 MLT), with the highest occurrence rate associated with northward Bz, strong PSWand SYM‐H, and weak AE conditions. The strongest flux decay of these dropouts is found on the nightside, which strongly depends on PSWand SYM‐H. However, there is no clear MLT dependence of the occurrence rate of relativistic electron flux dropouts above ∼1 MeV, but the flux decay of these dropouts is more significant on the dayside, with stronger decay associated with southward IMF Bz, strong PSW, SYM‐H, and AE conditions. Our statistical results are crucial for understanding of the fundamental physical mechanisms that control the outer belt electron dynamics and developing future potential radiation belt forecasting capability. 
    more » « less
  3. Abstract While whistler‐mode waves are generated by injected anisotropic electrons on the nightside, the observed day‐night asymmetry of wave distributions raises an intriguing question about their generation on the dayside. In this study, we evaluate the distributions of whistler‐mode wave amplitudes and electrons as a function of distance from the magnetopause (MP) on the dayside from 6 to 18 hr in magnetic local time (MLT) within ±18° of magnetic latitude using the Time History of Events and Macroscale Interaction During Substorms measurements from June 2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and geomagnetic index, we conduct a statistical analysis to examine whistler‐mode wave amplitude, as well as anisotropy and phase space density (PSD) of source electrons across 1–20 keV energies, which potentially provide a source of free energy for wave generation. In coordinates relative to the MP, we find that lower‐band (0.05–0.5fce) waves occur much closer to the MP than upper‐band (0.5–0.8fce) waves, wherefceis electron cyclotron frequency. Our statistical results reveal that strong waves are associated with high anisotropy and high PSD of source electrons near the equator, indicating a preferred region for local wave generation on the dayside. Over 10–14 hr in MLT, as latitude increases, electron anisotropy decreases, while whistler‐mode wave amplitudes increase, suggesting that wave propagation from the equator to higher latitudes, along with amplification along the propagation path, is necessary to explain the observed waves on the dayside. 
    more » « less
  4. Abstract Energetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV atMshell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5fcefrequencies, wherefceis the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt. 
    more » « less
  5. Abstract We perform ensemble simulations of radiation belt electron acceleration using the quasi‐linear approach during the storm on 9 October 2012, where chorus waves dominated electron acceleration atL = 5.2. Based on a superposed epoch analysis of 11 similar storms when both multi‐MeV electron flux enhancements and chorus wave activities were observed by Van Allen Probes, we use percentiles to sample the normalized input distributions for the four key inputs to estimate their relative perturbations. Using 11 points in each input parameter including chorus wave amplitudeBw, chorus wave peak frequencyfm, background magnetic fieldB0, and electron densityNe, we ran 114simulations to quantify the impact of uncertainties in the input parameters on the resulting simulated electron acceleration by chorus. By comparing the simulations to observations, our ensemble simulations reveal that inaccuracies in all four input parameters significantly affect the simulated electron acceleration, with the largest simulation errors attributed to the uncertainties inBw,Ne, andfm. The simulation can deviate from the observations by four orders of magnitude, while members with largest probability density (smallest perturbations in the input) provide reasonable estimations of output fluxes with log accuracy errors concentrated between ∼−2.0 and 0.5. Quantifying the uncertainties in our study is a prerequisite for the validation of our radiation belt electron model and improvements of accurate electron flux predictions. 
    more » « less