skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relations Between Executive Functions and Causal Reasoning in Young Children
Despite the early development of causal reasoning (CR), and its potential for shaping scientific literacy, we have little understanding of its structural origins. Specifically, is CR a unique capability that develops relatively independently or is it largely dependent on broader, more fundamental, cognitive abilities? Executive Functioning (EF) is an especially promising contributor to CR based on its already established role in related skills like planning and problem solving (e.g., Diamond, 2013). To begin exploring this potential relationship, we assessed 123 three (Mage = 3.42 years) and 64 five year olds’ (Mage = 5.36 years) performance on two CR tasks (counterfactual reasoning and causal inference), each of which we expected might be influenced in different ways by distinct EF skills. The counterfactual reasoning task (Guajardo & Turley-Ames, 2004) required children to generate alternative courses of action that would lead to different outcomes in fictional vignettes. The causal inference task (Das Gupta & Bryant, 1989) required children to compare pictures taken before and after a transformation (e.g., broken flowerpot and intact flowerpot) and to select a tool (e.g., glue) that could have caused it. We measured EF with three tasks: flanker (inhibition), count and label (working memory), and dimensional change card sort (cognitive flexibility). Finally, we measured children’s vocabulary and processing speed. To explore the relationship between EF and CR, we conducted a series of four linear regressions predicting causal inference and counterfactual reasoning ability in 3 and 5 year olds. Of all our measures, only vocabulary and inhibitory control emerged as significant predictors of causal inference ability for both 3 (βvocab = .04, p = .002, and βinhib = .04, p = .04) and 5 year olds (βvocab = .03, p = .01, and βinhib = .02, p = .04). Similarly, inhibitory control emerged as the only significant predictor of counterfactual reasoning in 3 year olds, βinhib = .03, p = .03. In contrast, for 5 year olds, working memory was the only significantly predictor of counterfactual reasoning, βWM = .71, p = .02. These results suggest that causal inference skills are stably supported by inhibitory control throughout early childhood. The story for counterfactual reasoning, however, appears to be somewhat more complex. Consistent with previous work (Beck, Riggs & Gorniak, 2009), inhibitory control supported counterfactual reasoning ability in our 3-year-old sample. However, inhibitory control did not significantly predict counterfactual reasoning in 5 year olds, it was supported by working memory instead. One explanation for this difference might have to do with the sophistication of children’s counterfactual reasoning skills at these different ages. Taken together, these results suggest that CR does not develop as a unique capacity, but instead likely relies on EFs that influence different CR skills in distinct ways across development. This represents an initial step in understanding early CR skills, which are promising contributors to emerging scientific literacy.  more » « less
Award ID(s):
1762158
PAR ID:
10196732
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AERA
ISSN:
1502-9115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite increasing emphasis in the United States on promoting student engagement and achievement inscience, technology, engineering, and mathematics (STEM) fields, the origins of scientific literacy remainpoorly understood. We begin to address this limitation by considering the potential contributions oftwo distinct domain-general skills to early scientific literacy. Given their relevance to making predic-tions and evaluating evidence, we consider the degree to which causal reasoning skills relate to scientificliteracy (as measured by an adaptive standardized test specifically designed for preschoolers). We alsoconsider executive function (EF) as a potentially more fundamental contributor. While previous researchhas demonstrated that EF is predictive of achievement in other core academic domains like reading andmath, its relationship to scientific literacy, particularly in early childhood, has received little attention. Toexamine how causal reasoning and EF together potentially relate to the development of scientific literacyin young children, we recruited 125 3-year-olds to complete three causal reasoning tasks, three EF tasks,and the aforementioned measure of scientific literacy. Results from a series of hierarchical regressionsrevealed that EF, and one measure of causal reasoning (causal inferencing) were related to scientific liter-acy, even after controlling for age, ethnicity, maternal education, and vocabulary knowledge. Moreover,causal inferencing ability was a significant partial mediator between EF and scientific literacy. Althoughadditional research will be required to further specify the nature of these relationships, the current worksuggests that EF has the potential to support scientific literacy, perhaps in part, by scaffolding causalreasoning skills. 
    more » « less
  2. Whether and to what extent kindergarten children's executive functions (EF) constitute promising targets of early intervention is currently unclear. This study examined whether kindergarten children's EF predicted their second‐grade academic achievement and behavior. This was done using (a) a longitudinal and nationally representative sample (N = 8,920, Mage = 97.6 months), (b) multiple measures of EF, academic achievement, and behavior, and (c) extensive statistical control including for domain‐specific and domain‐general lagged dependent variables. All three measures of EF—working memory, cognitive flexibility, and inhibitory control—positively and significantly predicted reading, mathematics, and science achievement. In addition, inhibitory control negatively predicted both externalizing and internalizing problem behaviors. Children's EF constitute promising targets of experimentally evaluated interventions for increasing academic and behavioral functioning. 
    more » « less
  3. Abstract Recent work has probed the developmental mechanisms that promote fair sharing. This work investigated 2.5‐ to 5.5‐year‐olds’ (N = 316; 52% female; 79% White; data collected 2016–2018) sharing behavior in relation to three cognitive correlates: number knowledge, working memory, and cognitive control. In contrast to working memory and cognitive control, number knowledge was uniquely associated with fair sharing even after controlling for the other correlates and for age. Results also showed a causal effect: After a 5‐min counting intervention (vs. a control), children improved their fair sharing behavior from pre‐test to post‐test. Findings are discussed in light of how social, cognitive, and motivational factors impact sharing behavior. 
    more » « less
  4. Prior research has shown that the home learning environment (HLE) is critical in the development of spatial skills and that various parental beliefs influence the HLE. However, a comprehensive analysis of the impact of different parental beliefs on the spatial HLE remains lacking, leaving unanswered questions about which specific parental beliefs are most influential and whether inducing a growth mindset can enhance the spatial HLE. To address these gaps, we conducted an online study with parents of 3- to 5-year-olds. We found that parents’ growth mindset about their children’s ability strongly predicted the spatial HLE after controlling for parents’ motivational beliefs about their children, beliefs about their own ability, children’s age, children’s gender, and family SES. Further, reading an article about growth mindset led parents to choose more challenging spatial learning activities for their children. These findings highlight the critical role of parents’ growth mindset in the spatial HLE. Crucially, these findings demonstrate that general growth mindset messages without specific suggestions for parental practices can influence parental behavior intentions. Further, these effects were also observed in the control domain of literacy, underscoring the broad relevance of the growth mindset in the HLE. 
    more » « less
  5. There is a long-standing interest in the role that children’s understanding of pretense plays in their more general theory of mind development. Some argue that children understand pretense as a mental state, and the capacity to pretend is indicative of children possessing the capacity for mental representations. Others argue that children understand pretense in terms of actions and appearances, and an understanding of the mental states involved in pretending has a prolonged developmental trajectory. The goal of this paper is to integrate these ideas by positing that children understand pretense as a form of causal inference, which is based on both their general causal reasoning capacities and specific knowledge of mental states. I will first review literature on children’s understanding of pretense, and how such understanding can be conceptualized as integrating with children’s causal reasoning ability. I will then consider how children’s causal knowledge affects the ways they make inferences about others’ pretense. Next, I will consider the role of causal knowledge more broadly in children’s reasoning about pretense worlds, judgments of possibility, and counterfactual reasoning. Taken together the goal of this review is to synthesize how children understand pretending into a rational constructivist framework for understanding social cognitive development in a more integrative manner. 
    more » « less