skip to main content


Title: Enhanced Thermal Conductivity in a Diamine-Appended Metal–Organic Framework as a Result of Cooperative CO 2 Adsorption
Diamine-appended variants of the metal–organic framework M2(dobpdc) (M = Mg, Mn, Fe, Co, Zn; dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) exhibit exceptional CO2 capture properties owing to a unique cooperative adsorption mechanism, and thus hold promise for use in the development of energy- and cost-efficient CO2 separations. Understanding the nature of thermal transport in these materials is essential for such practical applications, however, as temperature rises resulting from exothermic CO2 uptake could potentially offset the energy savings offered by such cooperative adsorbents. Here, molecular dynamics (MD) simulations are employed in investigating thermal transport in bare and e-2-appended Zn2(dobpdc) (e-2 = N-ethylethylenediamine), both with and without CO2 as a guest. In the absence of CO2, the appended diamines function to enhance thermal conductivity in the ab-plane of e-2–Zn2(dobpdc) relative to the bare framework, as a result of noncovalent interactions between adjacent diamines that provide additional heat transfer pathways across the pore channel. Upon introduction of CO2, the thermal conductivity along the pore channel (the c-axis) increases due to the cooperative formation of metal-bound ammonium carbamates, which serve to create additional heat transfer pathways. In contrast, the thermal conductivity of the bare framework remains unchanged in the presence of zinc-bound CO2 but decreases in the presence of additional adsorbed CO2.  more » « less
Award ID(s):
1931436 1804011
NSF-PAR ID:
10196822
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption.

     
    more » « less
  2. The study of thermal convection in porous media is of both fundamental and practical interest. Typically, numerical studies have relied on the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by the Rayleigh number ( Ra ). Nusselt numbers ( Nu ) from these models predict Nu – Ra scaling exponents of 0.9–0.95. However, experiments and direct numerical simulations (DNS) have suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS and DOB models have demonstrated that the ‘pore-scale parameters’ not captured by the DOB equations greatly influence convection. Thermal convection also has the additional complication of different thermal transport properties (e.g. solid-to-fluid thermal conductivity ratio k s / k f and heat capacity ratio σ ) in different phases. Thus, in this work we compare results for thermal convection from the DNS and DOB equations. On the effects of pore size, DNS results show that Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with varying k s / k f at σ  = 1 and Group 2 with varying σ at k s / k f  = 1) are examined to compare the Nu – Ra relations at different porosity ( ϕ ) and k s / k f and σ values. Furthermore, we report that the boundary layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number and the effective heat capacity ratio, $\bar{\phi } = \phi + (1 - \phi )\sigma$ , in the DOB model. 
    more » « less
  3. Abstract

    This paper reports the first integration of laser‐etched polycrystalline diamond microchannels with template‐fabricated microporous copper for extreme convective boiling in a composite heat sink for power electronics and energy conversion. Diamond offers the highest thermal conductivity near room temperature, and enables aggressive heat spreading along triangular channel walls with 1:1 aspect ratio. Conformally coated porous copper with thickness 25 µm and 5 µm pore size optimizes fluid and heat transport for convective boiling within the diamond channels. Data reported here include 1280 W cm−2of heat removal from 0.7 cm2surface area with temperature rise beyond fluid saturation less than 21 K, corresponding to 6.3 × 105W m−2K−1. This heat sink has the potential to dissipate much larger localized heat loads with small temperature nonuniformity (5 kW cm−2over 200 µm × 200 µm with <3 K temperature difference). A microfluidic manifold assures uniform distribution of liquid over the heat sink surface with negligible pumping power requirements (e.g., <1.4 × 10−4of the thermal power dissipated). This breakthrough integration of functional materials and the resulting experimental data set a very high bar for microfluidic heat removal.

     
    more » « less
  4. Although supercritical CO2 (sCO2) heat transfer has been employed in industrial process since the 1960s, the underlying transport phenomenon in high-flux microscale geometries, as could be employed in concentrating solar receivers, is poorly understood. To date, nearly all experimental studies and simulations of supercritical convective heat transfer have focused on large diameter vertical channel and tube bundle flows, which may differ dramatically from microscale supercritical convection. Computational studies have primarily employed Reynolds averaged (RANS) turbulence modeling approaches, which may not capture effects from the sharply varying property trends of supercritical fluids. In this study, large eddy simulation (LES) turbulence modeling techniques are employed to study heat transfer characteristics of sCO2 in microscale heat exchangers. The simulation geometry consists of a microchannel of 750×737 μm cross-section and 5 mm length, heated from all four sides. Simulation cases are evaluated at reduced pressure P_r = 1.1, mass flux G = 1000 kg/m^2-s, heat flux q'' = 1.7 − 8.9 W/cm^2 , and varying inlet temperature: 20 − 100℃. Computational results reveal thermal transport mechanisms specific to microscale sCO2 flows. Results have been compared with available supercritical convection correlations to identify the most applicable heat transfer models for engineering of microchannel sCO2 heat exchangers. 
    more » « less
  5. Transition metal selenides have attracted intensive interest as cost-effective electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) because of the continuous thrust in sustainable energy conversion. In this article a Mn-based bifunctional electrocatalyst, MnSe, has been identified which shows efficient OER and ORR activity in alkaline medium. The catalytic activity could be further enhanced by using multiwalled carbon nanotubes (MWCNTs) which increases the charge transfer and electronic conductivity of the catalyst composite. This MnSe@MWCNT catalyst composite exhibits a very low overpotential of 290 mV at 10 mA cm −2 , which outperforms state-of-the-art RuO 2 as well as other oxide based electrocatalysts. Furthermore, the composite's facile OER kinetics was evidenced by its small Tafel slope of 54.76 mV dec −1 and low charge transfer resistance, indicating quick transport of the reactant species at the electrode interface. The MnSe@MWCNT also exhibited efficient electrocatalytic activity for ORR with an E onset of 0.94 V, which is among the best reported to date for chalcogenide based ORR electrocatalysts. More importantly, this MnSe-based ORR electrocatalyst exhibits high degree of methanol tolerance, showing no degradation of catalyst performance in the presence of copious quantities of methanol, thereby out-performing the state-of-the-art Pt electrocatalyst. The catalyst composite also exhibited exceptional functional and compositional stability for OER and ORR after a prolonged period of continuous operation in alkaline medium. The surface Raman analysis after OER revealed the retention of manganese selenide surface with evidence of oxo coordination, confirming the formation of an (oxy)selenide as the active surface for OER. Such efficient bifunctional OER and ORR activity makes this MnSe based catalyst attractive for overall electrolysis in regenerative as well as direct methanol fuel cells. 
    more » « less