skip to main content


Title: Spectral compression using time-varying cavities

Spectral compression will be needed for efficient interfacing of broadband photons with narrowband quantum memories for applications in quantum information and networking. In this Letter, we propose spectral compression via a time-varying, linear optical cavity. Unlike other recent works on time-varying cavities based on modulation of the intracavity phase, our spectral compression concept is based on rapid switching of coupling into the cavity. We analyze spectral compression performance metrics as a function of mirror reflectivity, cavity loss, and switching speed and discuss potential implementation in integrated photonics.

 
more » « less
Award ID(s):
1809784
NSF-PAR ID:
10197013
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
20
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 5688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and analyze the use of linear, time-variant cavities for spectral compression of broadband frequency correlated photon pairs, with potential applications in quantum networking. Our time-varying cavity relies on rapid electro-optic switching of input coupling to the cavity. 
    more » « less
  2. Spectral and temporal mode matching are required for the efficient interaction of photons and quantum memories. In our previous work [Opt. Lett.45,5688(2020).10.1364/OL.404891], we proposed a new route to spectrally compress broadband photons to achieve spectral mode matching with narrowband memories, using a linear, time-variant optical cavity based on rapid switching of input coupling. In this work, we extend our approach to attain temporal mode matching as well by exploiting the time variation of output coupling of the cavity. We numerically analyze the mode matching and loss performance of our time-varying cavity and present a possible implementation in integrated photonics.

     
    more » « less
  3. Abstract

    The stochastic trajectories of molecules in living cells, as well as the dynamics in many other complex systems, often exhibit memory in their path over long periods of time. In addition, these systems can show dynamic heterogeneities due to which the motion changes along the trajectories. Such effects manifest themselves as spatiotemporal correlations. Despite the broad occurrence of heterogeneous complex systems in nature, their analysis is still quite poorly understood and tools to model them are largely missing. We contribute to tackling this problem by employing an integral representation of Mandelbrot’s fractional Brownian motion that is compliant with varying motion parameters while maintaining long memory. Two types of switching fractional Brownian motion are analysed, with transitions arising from a Markovian stochastic process and scale-free intermittent processes. We obtain simple formulas for classical statistics of the processes, namely the mean squared displacement and the power spectral density. Further, a method to identify switching fractional Brownian motion based on the distribution of displacements is described. A validation of the model is given for experimental measurements of the motion of quantum dots in the cytoplasm of live mammalian cells that were obtained by single-particle tracking.

     
    more » « less
  4. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
    The benefits of photonics over electronics in the application of optical transceivers and both classical and quantum computing have been demonstrated over the past decades, especially in the ability to achieve high bandwidth, high interconnectivity, and low latency. Due to the high maturity of silicon photonics foundries, research on photonics devices such as silicon micro ring resonators (MRRs), Mach-Zehnder modulators (MZM), and photonic crystal (PC) resonators has attracted plenty of attention. Among these photonic devices, silicon MRRs using carrier depletion effects in p-n junctions represent optical switches manufacturable in the most compact magnitude at high volume with demonstrated switching energies ~5.2fJ/bit. In matrix multiplication demonstrated with integrated photonics, one approach is to couple one bus straight waveguide to several MRRs with different resonant wavelengths to transport signals in different channels, corresponding to a matrix row or column. However, such architectures are potentially limited to ~30 MRRs in series, by the limited free-spectral range (FSR) of an individual MRR. We show that PC switches with sub-micron optical mode confinements can have a FSR >300nm, which can potentially enable energy efficient computing with larger matrices of ~200 resonators by multiplexing. In this paper, we present designs for an oxide-clad bus-coupled PC switch with 1dB insertion loss, 5dB extinction, and ~260aJ/bit switching energy by careful control of the cavity geometry as well as p-n junction doping. We also demonstrate that air-clad bus-coupled PC switches can operate with 1dB insertion loss, 3dB extinction, and ~80aJ/bit switching energy. 
    more » « less
  5. Abstract Color tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and Js NaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement. 
    more » « less