skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in constructing accurate methods for hydrogen transfer reactions in large biological assemblies: rare events sampling for mechanistic discovery and tensor networks for quantum nuclear effects
We present two methods that address the computational complexities arising in hydrogen transfer reactions in enzyme active sites. To address the challenge of reactive rare events, we begin with an ab initio molecular dynamics adaptation of the Caldeira–Leggett system-bath Hamiltonian and apply this approach to the study of the hydrogen transfer rate-determining step in soybean lipoxygenase-1. Through direct application of this method to compute an ensemble of classical trajectories, we discuss the critical role of isoleucine-839 in modulating the primary hydrogen transfer event in SLO-1. Notably, the formation of the hydrogen bond between isoleucine-839 and the acceptor-OH group regulates the electronegativity of the donor and acceptor groups to affect the hydrogen transfer process. Curtailing the formation of this hydrogen bond adversely affects the probability of hydrogen transfer. The second part of this paper deals with complementing the rare event sampled reaction pathways obtained from the aforementioned development through quantum nuclear wavepacket dynamics. Essentially the idea is to construct quantum nuclear dynamics on the potential surfaces obtained along the biased trajectories created as noted above. Here, while we are able to obtain critical insights on the quantum nuclear effects from wavepacket dynamics, we primarily engage in providing an improved computational approach for efficient representation of quantum dynamics data such as potential surfaces and transmission probabilities using tensor networks. We find that utilizing tensor networks yields an accurate and efficient description of time-dependent wavepackets, reduced dimensional nuclear eigenstates and associated potential energy surfaces at much reduced cost.  more » « less
Award ID(s):
1665336
PAR ID:
10197125
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Faraday Discussions
Volume:
221
ISSN:
1359-6640
Page Range / eLocation ID:
379 to 405
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide an approach to sample rare events during classical ab initio molecular dynamics and quantum wavepacket dynamics. For classical AIMD, a set of fictitious degrees of freedom are introduced that may harmonically interact with the electronic and nuclear degrees of freedom to steer the dynamics in a conservative fashion toward energetically forbidden regions. A similar approach when introduced for quantum wavepacket dynamics has the effect of biasing the trajectory of the wavepacket centroid toward the regions of the potential surface that are difficult to sample. The approach is demonstrated for a phenol-amine system, which is a prototypical problem for condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields trajectories that conserve energy while sampling rare events. 
    more » « less
  2. The exponential scaling of the quantum degrees of freedom with the size of the system is one of the biggest challenges in computational chemistry and particularly in quantum dynamics. We present a tensor network approach for the time-evolution of the nuclear degrees of freedom of multiconfigurational chemical systems at a reduced storage and computational complexity. We also present quantum algorithms for the resultant dynamics. To preserve the compression advantage achieved via tensor network decompositions, we present an adaptive algorithm for the regularization of nonphysical bond dimensions, preventing the potentially exponential growth of these with time. While applicable to any quantum dynamical problem, our method is particularly valuable for dynamical simulations of nuclear chemical systems. Our algorithm is demonstrated using ab initio potentials obtained for a symmetric hydrogen-bonded system, namely, the protonated 2,2′-bipyridine, and compared to exact diagonalization numerical results. 
    more » « less
  3. Although vibronic coupling phenomena have been recognized in the excited state dynamics of transition metal complexes, their impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor–acceptor complex featuring a cyclometalated Pt(II) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(II) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their p-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes. 
    more » « less
  4. The accurate computational study of wavepacketnuclear dynamics is considered to be a classically intractableproblem, particularly with increasing dimensions. Here, we presenttwo algorithms that, in conjunction with other methods developedby us, may result in one set of contributions for performingquantum nuclear dynamics in arbitrary dimensions. For one of thetwo algorithms discussed here, we present a direct map betweenthe Born−Oppenheimer Hamiltonian describing the nuclearwavepacket time evolution and the control parameters of a spin−lattice Hamiltonian that describes the dynamics of qubit states in anion-trap quantum computer. This map is exact for three qubits, andwhen implemented, the dynamics of the spin states emulates thoseof the nuclear wavepacket in a continuous representation. However, this map becomes approximate as the number of qubits grows.In a second algorithm, we present a general quantum circuit decomposition formalism for such problems using a method called theQuantum Shannon Decomposition. This algorithm is more robust and is exact for any number of qubits at the cost of increasedcircuit complexity. The resultant circuit is implemented on IBM’s quantum simulator (QASM) for 3−7 qubits, without using a noisemodel so as to test the intrinsic accuracy of the method. In both cases, the wavepacket dynamics is found to be in good agreementwith the classical propagation result and the corresponding vibrational frequencies obtained from the wavepacket density timeevolution are in agreement to within a few tenths of a wavenumber. 
    more » « less
  5. Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump–probe type experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer–Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from the ground vibrational level of the D 1 Σ + adiabatic state that is embedded in the manifold of near-dissociation C 1 Σ + vibrational states. When coupled through a sharply localized first-order derivative coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver methodology. 
    more » « less