Abstract Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactors that accurately represent known heteromeric molecular complexes. We then develop CellChat, a tool that is able to quantitatively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applying CellChat to mouse and human skin datasets shows its ability to extract complex signaling patterns. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer (http://www.cellchat.org/) will help discover novel intercellular communications and build cell-cell communication atlases in diverse tissues. 
                        more » 
                        « less   
                    
                            
                            SoyCSN: Soybean context‐specific network analysis and prediction based on tissue‐specific transcriptome data
                        
                    
    
            Abstract The Soybean Gene Atlas project provides a comprehensive map for understanding gene expression patterns in major soybean tissues from flower, root, leaf, nodule, seed, and shoot and stem. The RNA‐Seq data generated in the project serve as a valuable resource for discovering tissue‐specific transcriptome behavior of soybean genes in different tissues. We developed a computational pipeline for Soybean context‐specific network (SoyCSN) inference with a suite of prediction tools to analyze, annotate, retrieve, and visualize soybean context‐specific networks at both transcriptome and interactome levels. BicMix and Cross‐Conditions Cluster Detection algorithms were applied to detect modules based on co‐expression relationships across all the tissues. Soybean context‐specific interactomes were predicted by combining soybean tissue gene expression and protein–protein interaction data. Functional analyses of these predicted networks provide insights into soybean tissue specificities. For example, under symbiotic, nitrogen‐fixing conditions, the constructed soybean leaf network highlights the connection between the photosynthesis function and rhizobium–legume symbiosis. SoyCSN data and all its results are publicly available via an interactive web service within the Soybean Knowledge Base (SoyKB) athttp://soykb.org/SoyCSN. SoyCSN provides a useful web‐based access for exploring context specificities systematically in gene regulatory mechanisms and gene relationships for soybean researchers and molecular breeders. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1734145
- PAR ID:
- 10197239
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Plant Direct
- Volume:
- 3
- Issue:
- 9
- ISSN:
- 2475-4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Martelli, Pier Luigi (Ed.)Abstract Motivation Clustering spatial-resolved gene expression is an essential analysis to reveal gene activities in the underlying morphological context by their functional roles. However, conventional clustering analysis does not consider gene expression co-localizations in tissue for detecting spatial expression patterns or functional relationships among the genes for biological interpretation in the spatial context. In this article, we present a convolutional neural network (CNN) regularized by the graph of protein–protein interaction (PPI) network to cluster spatially resolved gene expression. This method improves the coherence of spatial patterns and provides biological interpretation of the gene clusters in the spatial context by exploiting the spatial localization by convolution and gene functional relationships by graph-Laplacian regularization. Results In this study, we tested clustering the spatially variable genes or all expressed genes in the transcriptome in 22 Visium spatial transcriptomics datasets of different tissue sections publicly available from 10× Genomics and spatialLIBD. The results demonstrate that the PPI-regularized CNN constantly detects gene clusters with coherent spatial patterns and significantly enriched by gene functions with the state-of-the-art performance. Additional case studies on mouse kidney tissue and human breast cancer tissue suggest that the PPI-regularized CNN also detects spatially co-expressed genes to define the corresponding morphological context in the tissue with valuable insights. Availability and implementation Source code is available at https://github.com/kuanglab/CNN-PReg. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
- 
            Abstract The gene expression landscape across different tissues and developmental stages reflects their biological functions and evolutionary patterns. Integrative and comprehensive analyses of all transcriptomic data in an organism are instrumental to obtaining a comprehensive picture of gene expression landscape. Such studies are still very limited in sorghum, which limits the discovery of the genetic basis underlying complex agricultural traits in sorghum. We characterized the genome‐wide expression landscape for sorghum using 873 RNA‐sequencing (RNA‐seq) datasets representing 19 tissues. Our integrative analysis of these RNA‐seq data provides the most comprehensive transcriptomic atlas for sorghum, which will be valuable for the sorghum research community for functional characterizations of sorghum genes. Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs) and 2080 tissue‐specific expression genes (TEGs) for the 19 tissues. We identified different gene features between HKGs and TEGs, and we found that HKGs have experienced stronger selective constraints than TEGs. Furthermore, we built a transcriptome‐wide co‐expression network (TW‐CEN) comprising 35 modules with each module enriched in specific Gene Ontology terms. High‐connectivity genes in TW‐CEN tend to express at high levels while undergoing intensive selective pressure. We also built global and seed‐preferential co‐expression networks of starch synthesis pathways, which indicated that photosynthesis and microtubule‐based movement play important roles in starch synthesis. The global transcriptome atlas of sorghum generated by this study provides an important functional genomics resource for trait discovery and insight into starch synthesis regulation in sorghum.more » « less
- 
            High-throughput gene expression profiling measures individual gene expression across conditions. However, genes are regulated in complex networks, not as individual entities, limiting the interpretability of gene expression data. Machine learning models that incorporate prior biological knowledge are a powerful tool to extract meaningful biology from gene expression data. Pathway-level information extractor (PLIER) is an unsupervised machine learning method that defines biological pathways by leveraging the vast amount of published transcriptomic data. PLIER converts gene expression data into known pathway gene sets, termed latent variables (LVs), to substantially reduce data dimensionality and improve interpretability. In the current study, we trained the first mouse PLIER model on 190,111 mouse brain RNA-sequencing samples, the greatest amount of training data ever used by PLIER. We then validated the mousiPLIER approach in a study of microglia and astrocyte gene expression across mouse brain aging. mousiPLIER identified biological pathways that are significantly associated with aging, including one latent variable (LV41) corresponding to striatal signal. To gain further insight into the genes contained in LV41, we performedk-means clustering on the training data to identify studies that respond strongly to LV41. We found that the variable was relevant to striatum and aging across the scientific literature. Finally, we built a Web server (http://mousiplier.greenelab.com/) for users to easily explore the learned latent variables. Taken together, this study defines mousiPLIER as a method to uncover meaningful biological processes in mouse brain transcriptomic studies.more » « less
- 
            Abstract Legume plants such as soybean produce two major types of root lateral organs, lateral roots and root nodules. A robust computational framework was developed to predict potential gene regulatory networks (GRNs) associated with root lateral organ development in soybean. A genome-scale expression data set was obtained from soybean root nodules and lateral roots and subjected to biclustering using QUBIC (QUalitative BIClustering algorithm). Biclusters and transcription factor (TF) genes with enriched expression in lateral root tissues were converged using different network inference algorithms to predict high-confidence regulatory modules that were repeatedly retrieved in different methods. The ranked combination of results from all different network inference algorithms into one ensemble solution identified 21 GRN modules of 182 co-regulated genes networks, potentially involved in root lateral organ development stages in soybean. The workflow correctly predicted previously known nodule- and lateral root-associated TFs including the expected hierarchical relationships. The results revealed distinct high-confidence GRN modules associated with early nodule development involving AP2, GRF5 and C3H family TFs, and those associated with nodule maturation involving GRAS, LBD41 and ARR18 family TFs. Knowledge from this work supported by experimental validation in the future is expected to help determine key gene targets for biotechnological strategies to optimize nodule formation and enhance nitrogen fixation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
