skip to main content


Search for: All records

Award ID contains: 1754443

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    As one of the most diverse and economically important families on Earth, ground beetles (Carabidae) are viewed as a key barometer of climate change. Recent meta‐analyses provide equivocal evidence on abundance changes of terrestrial insects. Generalizations from traits (e.g., body size, diets, flights) provide insights into understanding community responses, but syntheses for the diverse Carabidae have not yet emerged. We aim to determine how habitat and trait syndromes mediate risks from contemporary and future climate change on the Carabidae community.

    Location

    North America.

    Time period

    2012–2100.

    Major taxa studied

    Ground beetles (Carabidae).

    Methods

    We synthesized the abundance and trait data for 136 species from the National Ecological Observatory Network (NEON) and additional raw data from studies across North America with remotely sensed habitat characteristics in a generalized joint attribute model. Combined Light Detection and RAnging (LiDAR) and hyperspectral imagery were used to derive habitat at a continental scale. We evaluated climate risks on the joint response of species and traits by expanding climate velocity to response velocity given habitat change.

    Results

    Habitat contributes more variations in species abundance and community‐weighted mean traits compared to climate. Across North America, grassland fliers benefit from open habitats in hot, dry climates. By contrast, large‐bodied, burrowing omnivores prefer warm‐wet climates beneath closed canopies. Species‐specific abundance changes predicted by the fitted model under future shared socioeconomic pathways (SSP) scenarios are controlled by climate interactions with habitat heterogeneity. For example, the mid‐size, non‐flier is projected to decline across much of the continent, but the magnitudes of declines are reduced or even reversed where canopies are open. Conversely, temperature dominates the response of the small, frequent flierAgonoleptus conjunctus, causing projected change to be more closely linked to regional temperature changes.

    Main conclusions

    Carabidae community reorganization under climate change is being governed by climate–habitat interactions (CHI). Species‐specific responses to CHI are explained by trait syndromes. The fact that habitat mediates warming impacts has immediate application to critical habitat designation for carabid conservation.

     
    more » « less
  2. Abstract Background

    Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity.

    Methods

    We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms.

    Results

    Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2–infected individuals with and without respiratory symptoms (PERMANOVA, P  = .002; R2 = 0.009). SARS-CoV-2–infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18–.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2–infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age.

    Conclusions

    We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.

     
    more » « less
  3. Abstract

    Small mammals are important to the functioning of ecological communities with changes to their abundances used to track impacts of environmental change. While capture–recapture estimates of absolute abundance are preferred, indices of abundance continue to be used in cases of limited sampling, rare species with little data, or unmarked individuals. Improvement to indices can be achieved by calibrating them to absolute abundance but their reliability across years, sites, or species is unclear. To evaluate this, we used the US National Ecological Observatory Network capture–recapture data for 63 small mammal species over 46 sites from 2013 to 2019. We generated 17,155 absolute abundance estimates using capture–recapture analyses and compared these to two standard abundance indices, and three types of calibrated indices. We found that neither raw abundance indices nor index calibrations were reliable approximations of absolute abundance, with raw indices less correlated with absolute abundance than index calibrations (raw indices overall R2 < 0.5, index calibration overall R2 > 0.6). Performance of indices and index calibrations varied by species, with those having higher and less variable capture probabilities performing best. We conclude that indices and index calibration methods should be used with caution with a count of individuals being the best index to use, especially if it can be calibrated with capture probability. None of the indices we tested should be used for comparing different species due to high variation in capture probabilities. Hierarchical models that allow for sharing of capture probabilities over species or plots (i.e., joint-likelihood models) may offer a better solution to mitigate the cost and effort of large-scale small mammal sampling while still providing robust estimates of abundance.

     
    more » « less
  4. Abstract

    Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.

     
    more » « less
  5. Summary

    Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five‐station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time‐series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities. Water temperature and distance from shore (which serves as a proxy for gradients in factors such as productivity, terrestrial input and nutrients) both most influence community composition. However, at the phylotype level, modelling shows the distribution of some taxa is linked to temperature, others to distance from shore and some by both factors, highlighting that taxa with distinct environmental preferences underlie apparent clustering by station. Thus, continental margins contain microbial communities that are distinct from those of either the nearshore or the offshore environments and contain mixtures of phylotypes with nearshore or offshore preferences rather than those unique to the shelf environment.

     
    more » « less
  6. Blonder, Benjamin (Ed.)
    Free, publicly-accessible full text available May 1, 2024
  7. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  8. McGlinn, Daniel (Ed.)
  9. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution. 
    more » « less