skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the K-theory of division algebras over local fields
Let K be a complete discrete valuation field with finite residue field of characteristic p, and let D be a central division algebra over K of finite index d. Thirty years ago, Suslin and Yufryakov showed that for all prime numbers ℓ different from p and integers j≥1 , there exists a "reduced norm" isomorphism of ℓ-adic K-groups Nrd_{D/K}:K_j(D,Z_ℓ)→K_j(K,Z_ℓ) such that d⋅Nrd_{D/K} is equal to the norm homomorphism N_{D/K}. The purpose of this paper is to prove the analogous result for the p-adic K-groups. To do so, we employ the cyclotomic trace map to topological cyclic homology and show that there exists a "reduced trace" equivalence Trd_{A/S}:THH(A|D,Z_p)→THH(S|K,Z_p) between two p-complete cyclotomic spectra associated with D and K, respectively. Interestingly, we show that if p divides d, then it is not possible to choose said equivalence such that, as maps of cyclotomic spectra, d⋅Trd_{A/S} agrees with the trace Tr_{A/S}, although this is possible as maps of spectra with T-action  more » « less
Award ID(s):
1702152
PAR ID:
10197420
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
219
Issue:
1
ISSN:
0020-9910
Page Range / eLocation ID:
281-329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let p∈Z be an odd prime. We prove a spectral version of Tate–Poitou duality for the algebraic K-theory spectra of number rings with p inverted. This identifies the homotopy type of the fiber of the cyclotomic trace K(OF)∧p→TC(OF)∧p after taking a suitably connective cover. As an application, we identify the homotopy type at odd primes of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of Z. 
    more » « less
  2. We describe a construction of the cyclotomic structure on topological Hochschild homology (THH) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spectra, avoiding use of the Bökstedt coherence machinery. We are also able to define two relative versions of topological cyclic homology (TC) and TR-theory: one starting with a ring C_n-spectrum and one starting with an algebra over a cyclotomic commutative ring spectrum A. We describe spectral sequences computing the relative theory over A in terms of TR over the sphere spectrum and vice versa. Furthermore, our construction permits a straightforward definition of the Adams operations on TR and TC. 
    more » « less
  3. Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} . 
    more » « less
  4. We compare two maps that arise in study of the cohomology of global fields with ramification restricted to a finite set S of primes. One of these maps, which we call an S-reciprocity map, interpolates the values of cup products in S-ramified cohomology. In the case of p-ramified cohomology of the pth cyclotomic field for an odd prime p, we use this to exhibit an intriguing relationship between particular values of the cup product on cyclotomic p-units. We then consider higher analogues of the S-reciprocity map and relate their cokernels to the graded quotients in augmentation filtrations of Iwasawa modules. 
    more » « less
  5. null (Ed.)
    Let $$A_1$$ and $$A_2$$ be abelian varieties over a number field $$K$$. We prove that if there exists a non-trivial morphism of abelian varieties between reductions of $$A_1$$ and $$A_2$$ at a sufficiently high percentage of primes, then there exists a non-trivial morphism $$A_1\to A_2$$ over $$\bar K$$. Along the way, we give an upper bound for the number of components of a reductive subgroup of $$GL_n$$ whose intersection with the union of $$Q$$-rational conjugacy classes of $$GL_n$$ is Zariski-dense. This can be regarded as a generalization of the Minkowski-Schur theorem on faithful representations of finite groups with rational characters. 
    more » « less