The aero-structural design of bridges is mainly controlled by the deck cross-section design. Design modifications on bridge decks impact the deck aerodynamics and the deck mechanical contribution, which also affect the bridge aeroelastic responses. The nonlinear inherent nature of bluff body aerodynamics combined with the nonlinearities of multimodal aeroelastic analyses result in complex relationships between the full bridge aeroelastic responses and deck shape design variables. This fact impacts the design process as it may lead to the development of complex feasible design regions in the chosen design domain, including disjoint feasible regions that may cause local minima. Given the limitations of metaheuristic optimization methods to deal with optimization problems with large sets of design variables, as required in holistic bridge design problems, gradient-based optimization algorithms can be recast to address global optimization problems. In this study, we propose the use of tunneling optimization methods to address this challenge.
more »
« less
Finding Better Local Optima in Topology Optimization via Tunneling
Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.
more »
« less
- Award ID(s):
- 1751211
- PAR ID:
- 10197571
- Date Published:
- Journal Name:
- ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Volume:
- 2B
- Issue:
- DETC2018-86116
- Page Range / eLocation ID:
- V02BT03A014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways:(i) our objective formulation does not change the location of stationary points compared to the original optimization problem;(ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (ie to the average of their parameters);(iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and …more » « less
-
Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations.more » « less
-
null (Ed.)Langevin dynamics (LD) has been proven to be a powerful technique for optimizing a non-convex objective as an efficient algorithm to find local minima while eventually visiting a global minimum on longer time-scales. LD is based on the first-order Langevin diffusion which is reversible in time. We study two variants that are based on non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and the Langevin dynamics with a non-symmetric drift (NLD). Adopting the techniques of Tzen et al. (2018) for LD to non-reversible diffusions, we show that for a given local minimum that is within an arbitrary distance from the initialization, with high probability, either the ULD trajectory ends up somewhere outside a small neighborhood of this local minimum within a recurrence time which depends on the smallest eigenvalue of the Hessian at the local minimum or they enter this neighborhood by the recurrence time and stay there for a potentially exponentially long escape time. The ULD algorithm improves upon the recurrence time obtained for LD in Tzen et al. (2018) with respect to the dependency on the smallest eigenvalue of the Hessian at the local minimum. Similar results and improvements are obtained for the NLD algorithm. We also show that non-reversible variants can exit the basin of attraction of a local minimum faster in discrete time when the objective has two local minima separated by a saddle point and quantify the amount of improvement. Our analysis suggests that non-reversible Langevin algorithms are more efficient to locate a local minimum as well as exploring the state space.more » « less
-
null (Ed.)Curves play a fundamental role across computer graphics, physical simulation, and mathematical visualization, yet most tools for curve design do nothing to prevent crossings or self-intersections. This paper develops efficient algorithms for (self-)repulsion of plane and space curves that are well-suited to problems in computational design. Our starting point is the so-called tangent-point energy, which provides an infinite barrier to self-intersection. In contrast to local collision detection strategies used in, e.g., physical simulation, this energy considers interactions between all pairs of points, and is hence useful for global shape optimization: local minima tend to be aesthetically pleasing, physically valid, and nicely distributed in space. A reformulation of gradient descent, based on a Sobolev-Slobodeckij inner product enables us to make rapid progress toward local minima---independent of curve resolution. We also develop a hierarchical multigrid scheme that significantly reduces the per-step cost of optimization. The energy is easily integrated with a variety of constraints and penalties (e.g., inextensibility, or obstacle avoidance), which we use for applications including curve packing, knot untangling, graph embedding, non-crossing spline interpolation, flow visualization, and robotic path planning.more » « less
An official website of the United States government

