skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laying the Foundations of Deep Long-Term Crowd Flow Prediction
Predicting the crowd behavior in complex environments is a key requirement for crowd and disaster management, architectural design, and urban planning. Given a crowd’s immediate state, current approaches must be successively repeated over multiple time-steps for long-term predictions, leading to compute expensive and error-prone results. However, most applications require the ability to accurately predict hundreds of possible simulation outcomes (e.g., under different environment and crowd situations) at real-time rates, for which these approaches are prohibitively expensive. We propose the first deep framework to instantly predict the long-term flow of crowds in arbitrarily large, realistic environments. Central to our approach are a novel representation CAGE, which efficiently encodes crowd scenarios into compact, fixed-size representations that losslessly represent the environment, and a modified SegNet architecture for instant long-term crowd flow prediction. We conduct comprehensive experiments on novel synthetic and real datasets. Our results indicate that our approach is able to capture the essence of real crowd movement over very long time periods, while generalizing to never-before-seen environments and crowd contexts. The associated Supplementary Material, models, and datasets are available at github.com/SSSohn/LTCF.  more » « less
Award ID(s):
1723869 1703883 1955404
PAR ID:
10197841
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
European Conference on Computer Vision
ISSN:
1757-9651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches. 
    more » « less
  2. We present a system to generate a procedural environment that produces a desired crowd behaviour. Instead of altering the behavioural parameters of the crowd itself, we automatically alter the environment to yield such desired crowd behaviour. This novel inverse approach is useful both to crowd simulation in virtual environments and to urban crowd planning applications. Our approach tightly integrates and extends a space discretization crowd simulator with inverse procedural modelling. We extend crowd simulation by goal exploration (i.e. agents are initially unaware of the goal locations), variable‐appealing sign usage and several acceleration schemes. We use Markov chain Monte Carlo to quickly explore the solution space and yield interactive design. We have applied our method to a variety of virtual and real‐world locations, yielding one order of magnitude faster crowd simulation performance over related methods and several fold improvement of crowd indicators. 
    more » « less
  3. Long-term object detection requires the integration of frame-based results over several seconds. For non-deformable objects, long-term detection is often addressed using object detection followed by video tracking. Unfortunately, tracking is inapplicable to objects that undergo dramatic changes in appearance from frame to frame. As a related example, we study hand detection over long video recordings in collaborative learning environments. More specifically, we develop long-term hand detection methods that can deal with partial occlusions and dramatic changes in appearance. Our approach integrates object-detection, followed by time projections, clustering, and small region removal to provide effective hand detection over long videos. The hand detector achieved average precision (AP) of 72% at 0.5 intersection over union (IoU). The detection results were improved to 81% by using our optimized approach for data augmentation. The method runs at 4.7× the real-time with AP of 81% at 0.5 intersection over the union. Our method reduced the number of false-positive hand detections by 80% by improving IoU ratios from 0.2 to 0.5. The overall hand detection system runs at 4× real-time. 
    more » « less
  4. As transistor densities increase, managing thermal challenges in 3D IC designs becomes more complex. Traditional methods like finite element methods and compact thermal models (CTMs) are computationally expensive, while existing machine learning (ML) models require large datasets and a long training time. To address these challenges with the ML models, we introduce a novel ML framework that integrates with CTMs to accelerate steady-state thermal simulations without needing large datasets. Our approach achieves up to 70× speedup over state-of-the-art simulators, enabling real-time, high-resolution thermal simulations for 2D and 3D IC designs. 
    more » « less
  5. Animal-borne acoustic sensors provide valuable insights into wildlife behavior and environments but face significant power and storage constraints that limit deployment duration. We present a novel adaptive acoustic monitoring system designed for long-term, real-time observation of wildlife. Our approach combines low-power hardware, configurable firmware, and an unsupervised machine learning algorithm that intelligently filters acoustic data to prioritize novel or rare sounds while reducing redundant storage. The system employs a variational autoencoder to project audio features into a low-dimensional space, followed by adaptive clustering to identify events of interest. Simulation results demonstrate the system’s ability to normalize the collection of acoustic events across varying abundance levels, with rare events retained at rates of 80–85% while frequent sounds are reduced to 3–10% retention. Initial field deployments on caribou, African elephants, and bighorn sheep show promising application across diverse species and ecological contexts. Power consumption analysis indicates the need for additional optimization to achieve multi-month deployments. This technology enables the creation of novel wilderness datasets while addressing the limitations of traditional static acoustic monitoring approaches, offering new possibilities for wildlife research, ecosystem monitoring, and conservation efforts. 
    more » « less