skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Dynamic Crowd Mobility Learning and Meta Model Updates for A Smart Connected Campus
In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches.  more » « less
Award ID(s):
2118102
PAR ID:
10356957
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Embedded Wireless Systems and Networks EWSN
ISSN:
2562-2331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowd mobility prediction, in particular, forecasting flows at and transitions across different locations, is essential for crowd analytics and management in spacious environments featured with large gathering. We propose GAEFT, a novel crowd mobility analytics system based on the multi-task graph attention neural network to forecast crowd flows (inflows/outflows) and transitions. Specifically, we leverage the collective and sanitized campus Wi-Fi association data provided by our university information technology service and conduct a relatable case study. Our comprehensive data analysis reveals the important challenges of sparsity and skewness, as well as the complex spatio-temporal variations within the crowd mobility data. Therefore, we design a novel spatio-temporal clustering method to group Wi-Fi access points (APs) with similar transition features, and obtain more regular mobility features for model inputs. We then propose an attention-based graph embedding design to capture the correlations among the crowd flows and transitions, and jointly predict the AP-level flows as well as transitions across buildings and clusters through a multi-task formulation. Extensive experimental studies using more than 28 million association records collected during 2020-2021 academic year validate the excellent accuracy of GAEFT in forecasting dynamic and complex crowd mobility. 
    more » « less
  2. Accurate prediction of citywide crowd activity levels (CALs),i.e., the numbers of participants of citywide crowd activities under different venue categories at certain time and locations, is essential for the city management, the personal service applications, and the entrepreneurs in commercial strategic planning. Existing studies have not thoroughly taken into account the complex spatial and temporal interactions among different categories of CALs and their extreme occurrences, leading to lowered adaptivity and accuracy of their models. To address above concerns, we have proposedIE-CALP, a novel spatio-temporalInteractive attention-based andExtreme-aware model forCrowdActivityLevelPrediction. The tasks ofIE-CALPconsist of(a)forecasting the spatial distributions of various CALs at different city regions (spatial CALs), and(b)predicting the number of participants per category of the CALs (categorical CALs). To realize above, we have designed a novel spatial CAL-POI interaction-attentive learning component inIE-CALPto model the spatial interactions across different CAL categories, as well as those among the spatial urban regions and CALs. In addition,IE-CALPincorporate the multi-level trends (e.g., daily and weekly levels of temporal granularity) of CALs through a multi-level temporal feature learning component. Furthermore, to enhance the model adaptivity to extreme CALs (e.g., during extreme urban events or weather conditions), we further take into account theextreme value theoryand model the impacts of historical CALs upon the occurrences of extreme CALs. Extensive experiments upon a total of 738,715 CAL records and 246,660 POIs in New York City (NYC), Los Angeles (LA), and Tokyo have further validated the accuracy, adaptivity, and effectiveness ofIE-CALP’s interaction-attentive and extreme-aware CAL predictions. 
    more » « less
  3. Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos. 
    more » « less
  4. Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds. 
    more » « less
  5. In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by 2.7× and SpotFi by 2.3×. 
    more » « less