skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Dynamic Crowd Mobility Learning and Meta Model Updates for A Smart Connected Campus
In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches.  more » « less
Award ID(s):
2118102
PAR ID:
10356957
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Embedded Wireless Systems and Networks EWSN
ISSN:
2562-2331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowd mobility prediction, in particular, forecasting flows at and transitions across different locations, is essential for crowd analytics and management in spacious environments featured with large gathering. We propose GAEFT, a novel crowd mobility analytics system based on the multi-task graph attention neural network to forecast crowd flows (inflows/outflows) and transitions. Specifically, we leverage the collective and sanitized campus Wi-Fi association data provided by our university information technology service and conduct a relatable case study. Our comprehensive data analysis reveals the important challenges of sparsity and skewness, as well as the complex spatio-temporal variations within the crowd mobility data. Therefore, we design a novel spatio-temporal clustering method to group Wi-Fi access points (APs) with similar transition features, and obtain more regular mobility features for model inputs. We then propose an attention-based graph embedding design to capture the correlations among the crowd flows and transitions, and jointly predict the AP-level flows as well as transitions across buildings and clusters through a multi-task formulation. Extensive experimental studies using more than 28 million association records collected during 2020-2021 academic year validate the excellent accuracy of GAEFT in forecasting dynamic and complex crowd mobility. 
    more » « less
  2. With the increasing demand for wireless connectivity, ensuring the efficient coexistence of multiple radio access technologies in shared unlicensed spectrum has become an important issue. This paper focuses on optimizing Medium Access Control (MAC) parameters to enhance the coexistence of 5G New Radio in Unlicensed Spectrum (NR-U) and Wi-Fi networks operating in unlicensed spectrum with multiple priority classes of traffic that may have varying quality-of-service (QoS) requirements. In this context, we tackle the coexistence parameter management problem by introducing a QoS-aware State-Augmented Learnable (QaSAL) framework, designed to improve network performance under various traffic conditions. Our approach augments the state representation with constraint information, enabling dynamic policy adjustments to enforce QoS requirements effectively. Simulation results validate the effectiveness of QaSAL in managing NR-U and Wi-Fi coexistence, demonstrating improved channel access fairness while satisfying a latency constraint for high-priority traffic. 
    more » « less
  3. Accurate prediction of citywide crowd activity levels (CALs),i.e., the numbers of participants of citywide crowd activities under different venue categories at certain time and locations, is essential for the city management, the personal service applications, and the entrepreneurs in commercial strategic planning. Existing studies have not thoroughly taken into account the complex spatial and temporal interactions among different categories of CALs and their extreme occurrences, leading to lowered adaptivity and accuracy of their models. To address above concerns, we have proposedIE-CALP, a novel spatio-temporalInteractive attention-based andExtreme-aware model forCrowdActivityLevelPrediction. The tasks ofIE-CALPconsist of(a)forecasting the spatial distributions of various CALs at different city regions (spatial CALs), and(b)predicting the number of participants per category of the CALs (categorical CALs). To realize above, we have designed a novel spatial CAL-POI interaction-attentive learning component inIE-CALPto model the spatial interactions across different CAL categories, as well as those among the spatial urban regions and CALs. In addition,IE-CALPincorporate the multi-level trends (e.g., daily and weekly levels of temporal granularity) of CALs through a multi-level temporal feature learning component. Furthermore, to enhance the model adaptivity to extreme CALs (e.g., during extreme urban events or weather conditions), we further take into account theextreme value theoryand model the impacts of historical CALs upon the occurrences of extreme CALs. Extensive experiments upon a total of 738,715 CAL records and 246,660 POIs in New York City (NYC), Los Angeles (LA), and Tokyo have further validated the accuracy, adaptivity, and effectiveness ofIE-CALP’s interaction-attentive and extreme-aware CAL predictions. 
    more » « less
  4. Coexistence of 5G new radio unlicensed (NR-U) and Wi-Fi is highly prone to the collisions among NR-U gNBs (5G base stations) and Wi-Fi APs (access points). To improve performance and fairness for both networks, various collision resolution mechanisms have been proposed to replace the simple listen-before-talk (LBT) scheme used in the current 5G standard. We address two gaps in the literature: first, the lack of a comprehensive performance comparison among the proposed collision resolution mechanisms and second, the impact of multiple traffic priority classes. Through extensive simulations, we compare the performance of several recently proposed collision resolution mechanisms for NR-U/Wi-Fi coexistence. We extend one of these mechanisms to handle multiple traffic priorities. We then develop a traffic-aware multi-objective deep reinforcement learning algorithm for the scenario of coexistence of high-priority traffic gNB user equipment (UE) with multiple lower-priority traffic UEs and Wi-Fi stations. The objective is to ensure low latency for high-priority gNB traffic while increasing the airtime fairness among the NR-U and Wi-Fi networks. Our simulation results show that the proposed algorithm lowers the channel access delay of high-priority traffic while improving the fairness among both networks. 
    more » « less
  5. Wi-Fi is an integral part of today's Internet infrastructure, enabling a diverse range of applications and services. Prior approaches to Wi-Fi resource allocation optimized Quality of Service (QoS) metrics, which often do not accurately reflect the user's Quality of Experience (QoE). To address the gap between QoS and QoE, we introduce Maestro, an adaptive method that formulates the Wi-Fi resource allocation problem as a partially observable Markov decision process (PO-MDP) to maximize the overall system QoE and QoE fairness. Maestro estimates QoE without using any application or client data; instead, it treats them as black boxes and leverages temporal dependencies in network telemetry data. Maestro dynamically adjusts policies to handle different classes of applications and variable network conditions. Additionally, Maestro uses a simulation environment for practical training. We evaluate Maestro in an enterprise-level Wi-Fi testbed with a variety of applications, and find that Maestro achieves up to 25× and 78% improvement in QoE and fairness, respectively, compared to the widely-deployed Wi-Fi Multimedia (WMM) policy. Compared to the state-of-the-art learning approach QFlow, Maestro increases QoE by up to 69%. Unlike QFlow which requires modifications to clients, we demonstrate that Maestro improves QoE of popular over-the-top services with unseen traffic without control over clients or servers. 
    more » « less