Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Signage systems are critical for communicating spatial information during wayfinding among a plethora of noise in the environment. A proper signage system can improve wayfinding performance and user experience by reducing the perceived complexity of the environment. However, previous models of sign-based wayfinding do not incorporate realistic noise or quantify the reduction in perceived complexity from the use of signage. Drawing upon concepts from information theory, we propose and validate a new agent-signage interaction model that quantifies available wayfinding information from signs for wayfinding. We conducted two online crowd-sourcing experiments to compute the distribution of a sign’s visibility and an agent’s decision-making confidence as a function of observation angle and viewing distance. We then validated this model using a virtual reality (VR) experiment with trajectories from human participants. The crowd-sourcing experiments provided a distribution of decision-making entropy (conditioned on visibility) that can be applied to any sign/environment. From the VR experiment, a training dataset of 30 trajectories was used to refine our model, and the remaining test dataset of 10 trajectories was compared with agent behavior using dynamic time warping (DTW) distance. The results revealed a reduction of 38.76% in DTW distance between the average trajectories before and after refinement. Our refined agent-signage interaction model provides realistic predictions of human wayfinding behavior using signs. These findings represent a first step towards modeling human wayfinding behavior in complex real environments in a manner that can incorporate several additional random variables (e.g., environment layout).more » « less
-
Predicting the crowd behavior in complex environments is a key requirement for crowd and disaster management, architectural design, and urban planning. Given a crowd’s immediate state, current approaches must be successively repeated over multiple time-steps for long-term predictions, leading to compute expensive and error-prone results. However, most applications require the ability to accurately predict hundreds of possible simulation outcomes (e.g., under different environment and crowd situations) at real-time rates, for which these approaches are prohibitively expensive. We propose the first deep framework to instantly predict the long-term flow of crowds in arbitrarily large, realistic environments. Central to our approach are a novel representation CAGE, which efficiently encodes crowd scenarios into compact, fixed-size representations that losslessly represent the environment, and a modified SegNet architecture for instant long-term crowd flow prediction. We conduct comprehensive experiments on novel synthetic and real datasets. Our results indicate that our approach is able to capture the essence of real crowd movement over very long time periods, while generalizing to never-before-seen environments and crowd contexts. The associated Supplementary Material, models, and datasets are available at github.com/SSSohn/LTCF.more » « less
-
Multiscale modeling has yielded immense success on various machine learning tasks. However, it has not been properly explored for the prominent task of information diffusion, which aims to understand how information propagates along users in online social networks. For a specific user, whether and when to adopt a piece of information propagated from another user is affected by complex interactions, and thus, is very challenging to model. Current state-of-the-art techniques invoke deep neural models with vector representations of users. In this paper, we present a Hierarchical Information Diffusion (HID) framework by integrating user representation learning and multiscale modeling. The proposed framework can be layered on top of all information diffusion techniques that leverage user representations, so as to boost the predictive power and learning efficiency of the original technique. Extensive experiments on three real-world datasets showcase the superiority of our method.