Student-instructor interactions have an influence on student achievement and perceptions of learning. In college and university settings, large introductory STEM courses are increasingly including Peer-Led Team Learning (PLTL), an evidence-based technique associated with improved student achievement, recruitment, and retention in STEM fields, especially for underserved populations. Within this technique, peer leaders hold a unique position in a student’s education. Peer leaders have relevant experience in that they have had recent success in the courses in which they facilitate student learning, yet, compared to student-faculty or student-teaching assistant relationships, there is minimal imbalance of authority or power. Students might find their peer leaders to be more relatable than faculty or graduate teaching assistants, and may even consider them to be role models. We explored students’ perceptions of peer leader relatability and role model status in relation to students’ achievement and their perceived learning gains in the context of an introductory biology course with an associated PLTL program. The final course grades and self-assessed learning gains of PLTL students who felt they related to their peer leader were compared to those who did not. We also compared final course grades and self-assessed learning gains between PLTL students who viewed their peer leader as a role model versus those who did not. Self-reported learning gains were significantly higher for students who relate to their peer leader, as well as for students who viewed their peer leaders as a role model. There is some support that this trend is stronger for STEM majors versus those who are not enrolled in a STEM program, though the interaction is not significant. Significant differences in overall course grade were only observed between students who reported that they related to their peer leader versus those who did not relate to their peer leader.
more »
« less
Mediating Students’ Fixation with Grades in an Inquiry-Based Undergraduate Biology Course
Abstract The paper analyzes focus group data to explore student perceptions of an inquiry-based undergraduate biology course. Though the course was designed to mimic the scientific process by incorporating uncertainty, peer review, and self-reflection, students came to class focused on getting As and with a developed schema for didactic instruction and passive learning. They perceived the autonomy and self-directedness of the learning experience as a threat to their grades, and responded with strategies that protected their grades and ego, but were deleterious to learning. Students could identify merits of the inquiry-based approach; however, they made clear: they prioritized grades, and were unwilling to trust an unfamiliar pedagogy if they perceived it jeopardized their grades. In the framework of self-regulated learning, the discussion considers how to scaffold students to foreground learning over achievement.
more »
« less
- Award ID(s):
- 1823935
- PAR ID:
- 10197864
- Date Published:
- Journal Name:
- Science education
- ISSN:
- 1573-1901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to the Covid‐19 pandemic, the education system worldwide faced sudden and unforeseen challenges. Many academic institutions closed their doors, forcing both educators and students to transition to Emergency Remote Teaching (ERT) for the remainder of the semester. This transition eliminated hands‐on experiences, increased workload, and altered curricula. However, these aspects, as well as students' perceptions, study habits, and performance in response to ERT remain poorly documented. This contribution describes changes in the curriculum of an undergraduate cadaver‐based laboratory, and explores students' performance, self‐perceived learning, and overall satisfaction during this educational crisis. Online content delivery for this course included both asynchronous instruction and synchronous discussion sessions. While formative assessments remained the same, online spotter examinations included short answer, multiple choice, multiple answer, ordering, and true and false questions. Despite examination grades improving 20% during ERT, students reported lower levels of learning, confidence, and engagement with the course materials when compared to the face‐to‐face portion of the class. The most prevalent challenges identified by students were those related to the loss of access to cadaver‐based learning, including difficulty identifying and visualizing structures in three dimensions, and the loss of context and sensorial cues. Flexibility in taking examinations and learning the material at their own pace were recognized as positive outcomes of the ERT transition. While the resulting student perceptions and performances are unsurprising, they offer insight into the challenges of fostering a productive learning environment in a future threatened by epidemic outbreak and economic uncertainty.more » « less
-
Introduction: Inquiry-based learning is vital to the engineering design process, and most crucially in the laboratory and hands-on settings. Through the model of inquiry-based design, student teams are able to formulate critical inputs to the design process and develop a stronger and more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s Weldon School of BME, the curriculum utilizes the engineering design process to guide students through three (3) different modules covering different Biotransport phenomena (diffusivity, mass transport, and heat transfer). Students are required to research, conceptualize, and generate hypotheses around a module prompt. Students design, execute, and analyze their own experimental setups to test the hypotheses within an autodidactic peer-learning structure. Methods: A multi-year study was completed spanning from 2014 to 2016, assessing students’ end of course evaluations. With an integration of the flipped lecture into the lab being first implemented in 2015 (prior to 2015, the flipped lecture was a stand-alone course offered outside of the lab sections), the data presented here offers a comparison of student evaluations between these two course structures. Per the student response rates, the sample size for each year was: n=81 (2016); n=60 (2015); n=48 (2014). The surveys were anonymous and a host of questions related to overall course satisfaction, structure, and content were posed. Results: Analysis of the data showed a consistent increase in overall student satisfaction with the course following the implementation of the new structure. The percent of students giving a satisfactory rating or higher for the 2014, 2015 and 2016 course offerings was 79%, 89%, 92%, respectively. This shows a significant difference between 2014 and 2016. Conclusion: The integration of a flipped lecture into the lab successfully improved student satisfaction and self-perceived understanding of course material. This format also improved the delivery of content to students as assessed by maintaining pertinence to the lab topics and clear understanding of learning concepts.more » « less
-
In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course.more » « less
-
Students, instructors, and policy makers are in need of research-based recommendations for supporting students’ motivation to pursue STEM fields. The present study addressed this need by examining relations between perceived motivational supports, year-long trajectories of expectancy for success and three task values, and grades among students ( N = 1,021) in a large, gateway engineering course. Results indicated that students with higher motivation at the beginning of the year tended to perceive their class as more motivationally supportive. Controlling for relations between initial motivation and perceptions, perceived instructional supports for mastery goals, autonomy, and competence predicted more positive trajectories of all three task values. Conversely, higher perceived instructor performance goals negatively predicted grades and the slopes of self-efficacy and interest value. Results contribute key understanding about the interconnectedness of individual motivation and climate perceptions, while indicating the importance students place on certain motivationally supportive practices in promoting students’ STEM motivation trajectories.more » « less
An official website of the United States government

