skip to main content

Origami designs have attracted significant attention from researchers seeking to develop new types of deployable structures due to their ability to undergo large and complex yet predictable shape changes. The Kresling pattern, which is based on a natural accumulation of folds and creases during the twistbuckling of a thin-walled cylinder, offers a great example for the design of deployable systems that expand uniaxially into tubes or booms. However, much remains to be understood regarding the characteristics of Kresling-based deployable systems, and their dynamics during the deployment process remain largely unexplored. Hence this research investigates the deployment of Kresling origami-inspired structures, employing a full sixdegree- of-freedom truss-based model to study their dynamics under different conditions. Results show that tuning the initial rotation angle of a structure gives rise to several qualitatively distinct mechanical properties and stability characteristics, each of which has different implications for the design of the deployable systems. Dynamic analyses reveal the robustness of Kresling structures to out-of-axis perturbations while remaining compliant in the axial direction. These findings suggest that Kresling-based designs can form the basis for the development of new types of deployable structures and systems with tunable performance.
Award ID(s):
Publication Date:
Journal Name:
ASME section IX
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Origami has great potential for creating deployable structures, however, most studies have focused on their static or kinematic features, while the complex and yet important dynamic behaviors of the origami deployment process have remained largely unexplored. In this research, we construct a dynamic model of a Miura origami sheet that captures the combined panel inertial and flexibility effects, which are otherwise ignored in rigid folding kinematic models but are critical in describing the dynamics of origami deployment. Results show that by considering these effects, the dynamic deployment behavior would substantially deviate from a nominal kinematic unfolding path. Additionally, the pattern geometries influence the effective structural stiffness, and it is shown that subtle changes can result in qualitatively different dynamic deployment behaviors. These differences are due to the multistability of the Miura origami sheet, where the structure may snap between its stable equilibria during the transient deployment process. Lastly, we show that varying the deployment rate can affect the dynamic deployment configuration. These observations are original and these phenomena have not and cannot be derived using traditional approaches. The tools and outcomes developed from this research enable a deeper understanding of the physics behind origami deployment that will pave themore »way for better designs of origami-based deployable structures, as well as extend our fundamental knowledge and expand our comfort zone beyond current practice.« less
  2. Recent developments have shown that spatial structures devised from origami or low-dimensional rigid linkage mechanisms can be used to construct deployable arrays for antennas or satellites. Yet, some of these structures are limited to deployment in fixed planes or directions, or do not define straightforward processes for deployment. To surmount these limitations, this research introduces a reconfigurable single-degree-of-freedom spatial structure devised from a Kresling-inspired mechanism with integrated scissor arms. Analytical models are constructed to demonstrate compaction, deployment, and acoustic wave guiding capabilities of the proposed, modular structure. The influences of the geometric parameters on compaction, deployment, and scissor arm orientation are also explored, and reveal modular scissor arm behavior and large deployment-to-compaction area ratios. The acoustic wave guiding capabilities of the Kresling-inspired scissor structure are exemplified via a structure using spiral scissor arms, thereby proposing a novel concept for the construction of deployable wave guiding arrays. Experimental studies with model arrays complement the analytical findings of both the geometric reconfigurations and wave guiding functionality. Finally, out-of-plane configurations are depicted to demonstrate the three-dimensional shape change capabilities of the Kresling-inspired scissor structure. The results in this study encourage broader exploration of the interfaces between origami inspired structures and rigid linkage mechanisms.

  3. Abstract Origami has emerged as a powerful mechanism for designing functional foldable and deployable structures. Among various origami patterns, a large class of origami exhibits rotational symmetry, which possesses the advantages of elegant geometric shapes, axisymmetric contraction/expansion, and omnidirectional deployability, etc. Due to these merits, origami with rotational symmetry has found widespread applications in various engineering fields such as foldable emergency shelters, deformable wheels, deployable medical stents, and deployable solar panels. To guide the rational design of origami-based deployable structures and functional devices, numerous works in recent years have been devoted to understanding the geometric designs and mechanical behaviors of rotationally symmetric origami. In this review, we classify origami structures with rotational symmetry into three categories according to the dimensional transitions between their deployed and folded states as three-dimensional to three-dimensional, three-dimensional to two-dimensional, and two-dimensional to two-dimensional. Based on these three categories, we systematically review the geometric designs of their origami patterns and the mechanical behaviors during their folding motions. We summarize the existing theories and numerical methods for analyzing and designing these origami structures. Also, potential directions and future challenges of rotationally symmetric origami mechanics and applications are discussed. This review can provide guidelines for origami with rotationalmore »symmetry to achieve more functional applications across a wide range of length scales.« less
  4. Origami has emerged as a promising tool for the design of mechanical structures that can be folded into small volume and expanded to large structures, which enables the desirable features of compact storage and effective deployment. Most attention to date on origami deployment has been on its geometry, kinematics, and quasi-static mechanics, while the dynamics of deployment has not been systematically studied. On the other hand, deployment dynamics could be important in many applications, especially in high speed operation and low damping conditions. This research investigates the dynamic characteristics of the deploying process of origami structures through investigating a Miura-Ori sheet (Fig. 1(b, c)). In this study, we have utilized the stored energy in pre-deformed spring elements to actuate the deployment. We theoretically model and numerically analyze the deploying process of the origami sheet. Specifically, the sheet is modeled by bar-and-hinge blocks, in which the facet and crease stiffnesses are modeled to be related to the bar axial deformation and torsional motion at the creases. On the other hand, the structural inertia is modelled as mass points assigned at hinges. Numerical simulations show that, apart from axial contraction and expansion, the origami structure can exhibit transverse motion during the deployingmore »process. Further investigation reveals that the transverse motion has close relationship with the controlled deploying rate. This research will pave the way for further analysis and applications of the dynamics of origami-based structures.« less
  5. Origami provides a flexible platform for constructing three-dimensional multi-stable mechanical metamaterials and structures. While possessing many interesting features originating from folding, the development of multi-stable origami structures is faced with tremendous demands for acquiring tunability and adaptability. Through an integration of origami folding with magnets, this research proposes a novel approach to synthesize and harness multi-stable magneto-origami structures. Based on the stacked Miura-ori and the Kresling ori structures, we reveal that the embedded magnets could effectively tune the structure’s potential energy landscapes, which includes not only altering the position and the depth of the potential wells but essentially eliminating the intrinsic potential wells or generating new potential wells. Such magnet-induced evolutions of potential energy landscapes would accordingly change the origami structure’s stability profiles and the constitutive force–displacement relations. Based on proof-ofconcept prototypes with permeant magnets, the theoretically predicted effects of magnets are verified. The exploration is also extended to the dynamics realm. Numerical studies suggest that the incorporated magnets not only could translate the critical frequencies for achieving certain dynamical behaviors but also fundamentally adjust the frequency-amplitude relationship. Overall, this study shows that the proposed approach would provide a novel means to control the stability profile as well as themore »mechanics and dynamic characteristics of origami structures, and thus, inspire new innovations in designing adaptive mechanical metamaterials and structures.« less