skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks
Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types.  more » « less
Award ID(s):
1645964
PAR ID:
10197958
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Prognostics and Health Management (ICPHM)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types. 
    more » « less
  2. Abstract Timely and accurate bearing fault detection plays an important role in various industries. Data-driven deep learning methods have recently become a prevailing approach for bearing fault detection. Despite the success of deep learning, fault diagnosis performance is hinged upon the size of labeled data, the acquisition of which oftentimes is expensive in actual practice. Unlabeled data, on the other hand, are inexpensive. To fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance, in this research, we develop a semi-supervised learning method built upon the autoencoder. In this method, a joint loss is established to account for the effects of both the labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other benchmark models. 
    more » « less
  3. Despite dropout’s ubiquity in machine learning, its effectiveness as a form of data augmentation remains under-explored. We address two key questions: (i) When is dropout effective as an augmentation strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA transformations to targeted layers in neural networks. Through extensive experiments on contrastive learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout across layers does not consistently improve performance. Instead, dropout proves most beneficial in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation, and that performance trends invert when moving from contrastive tasks to supervised tasks. Our analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation---a notable issue in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation can outperform traditional input-level augmentations. This simple yet powerful approach can be seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both performance and generalization. 
    more » « less
  4. Rolling bearing is a critical component of machinery that has been widely applied in manufacturing, transportation, aerospace, and power and energy industries. The timely and accurate bearing fault detection thus is of vital importance. Computational data-driven deep learning has recently become a prevailing approach for bearing fault detection. Despite the progress of the deep learning approach, the deep learning performance is hinged upon the size of labeled data, the acquisition of which is expensive in actual implementation. Unlabeled data, on the other hand, are inexpensive. In this research, we develop a new semi-supervised learning method built upon the autoencoder to fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance. Compared with the state-of-the-art semi-supervised learning methods, this proposed method can be more conveniently implemented with fewer hyperparameters to be tuned. In this method, a joint loss is established to account for the effects of labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other well-established baseline methods. Specifically, nearly all emulation runs using the proposed methodology can lead to around 2%–5% accuracy increase, indicating its robustness in performance enhancement. 
    more » « less
  5. In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the oracle problem and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies. 
    more » « less