skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-locking origami structures and locking-induced piecewise stiffness
The folding motion of an origami structure can be stopped at a non-flat position when two of its facets bind together. Such facet-binding will induce self-locking so that the overall origami structure can stay at a pre-specified configuration without the help of additional locking devices or actuators. This research investigates the designs of self-locking origami structures and the locking-induced kinematical and mechanical properties. We show that incorporating multiple cells of the same type but with different geometry could significantly enrich the self-locking origami pattern design. Meanwhile, it offers remarkable programmability to the kinematical properties of the selflocking origami structures, including the number and position of locking points, and the deformation range. Self-locking will also affect the mechanical characteristics of the origami structures. Experiments and finite element simulations reveal that the structural stiffness will experience a sudden jump with the occurrence of self-locking, inducing a piecewise stiffness profile. The results of this research would provide design guidelines for developing self-locking origami structures and metamaterials with excellent kinematical and stiffness characteristics, with many potential engineering applications.  more » « less
Award ID(s):
1634545
PAR ID:
10197968
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME section IX
ISSN:
1486-7141
Page Range / eLocation ID:
1-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Origami foldcores, especially the blockfold cores, have emerged as promising components of high-performance sandwich composites. Inspired by the blockfold origami, we propose the axisymmetric blockfold origami (ABO), which is composed of both rectangular and trapezoidal panels. The ABO inherits the non-flat-foldability of the blockfold origami, and furthermore, displays self-locking mechanisms and enhanced stiffness. The geometry and folding kinematics of the ABO are formulated with respect to the geometric parameters and the folding angle of the assembly. The mathematical conditions are derived for the existence of self-locking mechanisms. We perform compression test simulations to demonstrate enhanced stiffness and increased load-bearing capacity. We find that the existence of rectangular panels not only dominates the non-flat-foldability of the ABO, but also contributes to the enhancement of the stiffness. Our results suggest the potential applications of the ABO for building load-bearing structures with rotational symmetry. Moreover, we discuss the prospects of designing tightly assembled multi-layered origami structures with prestress induced by the mismatch of successive layers to enlighten future research. 
    more » « less
  2. Origami-inspired mechanical metamaterials could exhibit extraordinary properties that originate almost exclusively from the intrinsic geometry of the constituent folds. While most of current state of the art efforts have focused on the origami’s static and quasi-static scenarios, this research explores the dynamic characteristics of degree-4 vertex (4-vertex) origami folding. Here we characterize the mechanics and dynamics of two 4-vertex origami structures, one is a stacked Miura-ori (SMO) structure with structural bistability, and the other is a stacked single-collinear origami (SSCO) structure with lockinginduced stiffness jump; they are the constituent units of the corresponding origami metamaterials. In this research, we theoretically model and numerically analyze their dynamic responses under harmonic base excitations. For the SMO structure, we use a third-order polynomial to approximate the bistable stiffness profile, and numerical simulations reveal rich phenomena including small-amplitude intrawell, largeamplitude interwell, and chaotic oscillations. Spectrum analyses reveal that the quadratic and cubic nonlinearities dominate the intrawell oscillations and interwell oscillations, respectively. For the SSCO structure, we use a piecewise constant function to describe the stiffness jump, which gives rise to a frequencyamplitude response with hardening nonlinearity characteristics. Mainly two types of oscillations are observed, one with small amplitude that coincides with the linear scenario because locking is not triggered, and the other with large amplitude and significant nonlinear characteristics. The method of averaging is adopted to analytically predict the piecewise stiffness dynamics. Overall, this research bridges the gap between the origami quasi-static mechanics and origami folding dynamics, and paves the way for further dynamic applications of origami-based structures and metamaterials. 
    more » « less
  3. Origami has emerged as a promising tool for the design of mechanical structures that can be folded into small volume and expanded to large structures, which enables the desirable features of compact storage and effective deployment. Most attention to date on origami deployment has been on its geometry, kinematics, and quasi-static mechanics, while the dynamics of deployment has not been systematically studied. On the other hand, deployment dynamics could be important in many applications, especially in high speed operation and low damping conditions. This research investigates the dynamic characteristics of the deploying process of origami structures through investigating a Miura-Ori sheet (Fig. 1(b, c)). In this study, we have utilized the stored energy in pre-deformed spring elements to actuate the deployment. We theoretically model and numerically analyze the deploying process of the origami sheet. Specifically, the sheet is modeled by bar-and-hinge blocks, in which the facet and crease stiffnesses are modeled to be related to the bar axial deformation and torsional motion at the creases. On the other hand, the structural inertia is modelled as mass points assigned at hinges. Numerical simulations show that, apart from axial contraction and expansion, the origami structure can exhibit transverse motion during the deploying process. Further investigation reveals that the transverse motion has close relationship with the controlled deploying rate. This research will pave the way for further analysis and applications of the dynamics of origami-based structures. 
    more » « less
  4. Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses. 
    more » « less
  5. Origami designs have attracted significant attention from researchers seeking to develop new types of deployable structures due to their ability to undergo large and complex yet predictable shape changes. The Kresling pattern, which is based on a natural accumulation of folds and creases during the twistbuckling of a thin-walled cylinder, offers a great example for the design of deployable systems that expand uniaxially into tubes or booms. However, much remains to be understood regarding the characteristics of Kresling-based deployable systems, and their dynamics during the deployment process remain largely unexplored. Hence this research investigates the deployment of Kresling origami-inspired structures, employing a full sixdegree- of-freedom truss-based model to study their dynamics under different conditions. Results show that tuning the initial rotation angle of a structure gives rise to several qualitatively distinct mechanical properties and stability characteristics, each of which has different implications for the design of the deployable systems. Dynamic analyses reveal the robustness of Kresling structures to out-of-axis perturbations while remaining compliant in the axial direction. These findings suggest that Kresling-based designs can form the basis for the development of new types of deployable structures and systems with tunable performance. 
    more » « less