skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Axisymmetric blockfold origami: a non-flat-foldable Miura variant with self-locking mechanisms and enhanced stiffness
Origami foldcores, especially the blockfold cores, have emerged as promising components of high-performance sandwich composites. Inspired by the blockfold origami, we propose the axisymmetric blockfold origami (ABO), which is composed of both rectangular and trapezoidal panels. The ABO inherits the non-flat-foldability of the blockfold origami, and furthermore, displays self-locking mechanisms and enhanced stiffness. The geometry and folding kinematics of the ABO are formulated with respect to the geometric parameters and the folding angle of the assembly. The mathematical conditions are derived for the existence of self-locking mechanisms. We perform compression test simulations to demonstrate enhanced stiffness and increased load-bearing capacity. We find that the existence of rectangular panels not only dominates the non-flat-foldability of the ABO, but also contributes to the enhancement of the stiffness. Our results suggest the potential applications of the ABO for building load-bearing structures with rotational symmetry. Moreover, we discuss the prospects of designing tightly assembled multi-layered origami structures with prestress induced by the mismatch of successive layers to enlighten future research.  more » « less
Award ID(s):
2323276
PAR ID:
10590944
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
480
Issue:
2288
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The folding motion of an origami structure can be stopped at a non-flat position when two of its facets bind together. Such facet-binding will induce self-locking so that the overall origami structure can stay at a pre-specified configuration without the help of additional locking devices or actuators. This research investigates the designs of self-locking origami structures and the locking-induced kinematical and mechanical properties. We show that incorporating multiple cells of the same type but with different geometry could significantly enrich the self-locking origami pattern design. Meanwhile, it offers remarkable programmability to the kinematical properties of the selflocking origami structures, including the number and position of locking points, and the deformation range. Self-locking will also affect the mechanical characteristics of the origami structures. Experiments and finite element simulations reveal that the structural stiffness will experience a sudden jump with the occurrence of self-locking, inducing a piecewise stiffness profile. The results of this research would provide design guidelines for developing self-locking origami structures and metamaterials with excellent kinematical and stiffness characteristics, with many potential engineering applications. 
    more » « less
  2. Origami folding and thin structure buckling are intensively studied for structural transformations with large packing ratio for various biomedical, robotic, and aerospace applications. The folding of circular rings has shown bistable snap‐through deformation under simple twisting motion and demonstrates a large area change to 11% of its undeformed configuration. Motivated by the large area change and the self‐guided deformation through snap‐folding, it is intended to design ring origami assemblies with unprecedented packing ratios. Herein, through finite‐element analysis, snap‐folding behaviors of single ring with different geometries (circular, elliptical, rounded rectangular, and rounded triangular shapes) are studied for ring origami assemblies for functional foldable structures. Geometric parameters' effects on the foldability, stability, and the packing ratio are investigated and are validated experimentally. With different rings as basic building blocks, the folding of ring origami assemblies including linear‐patterned rounded rectangular rings, radial‐patterned elliptical rings, and 3D crossing circular rings is further experimentally demonstrated, which show significant packing ratios of 7% and 2.5% of the initial areas, and 0.3% of the initial volume, respectively. It is envisioned that the reported snap‐folding of origami rings will provide alternative strategies to design foldable/deployable structures and devices with reliable self‐guided deformation and large area change. 
    more » « less
  3. null (Ed.)
    In this paper, we show that the rigid-foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from the partition problem, and that rigid-foldability with optional creases is NP-hard by a reduction from the 1-in-3 SAT problem. Unlike flat-foldabilty of origami or flexibility of other kinematic linkages, whose complexity originates in the complexity of the layer ordering and possible self-intersection of the material, rigid foldabilltiy from a planar state is hard even though there is no potential self-intersection. In fact, the complexity comes from the combinatorial behavior of the different possible rigid folding configurations at each vertex. The results underpin the fact that it is harder to fold from an unfolded sheet of paper than to unfold a folded state back to a plane, frequently encountered problem when realizing folding-based systems such as self-folding matters and reconfigurable robots. 
    more » « less
  4. Abstract Origami concepts show promise for creating complex deployable systems. However, translating origami to thick (non-paper) materials introduces challenges, including that thick panels do not flex to facilitate folding and the chances for self-intersection of components increase. This work introduces methods for creating permutations of linkage-based, origami-inspired mechanisms that retain desired kinematics but avoid self-intersection and enable their connection into deployable networks. Methods for reconfiguring overconstrained linkages and implementing them as modified origami-inspired mechanisms are proved and demonstrated for multiple linkage examples. Equations are derived describing the folding behavior of these implementations. An approach for designing networks of linkage-based origami vertices is demonstrated and applications for tessellations are described. The results offer the opportunity to exploit origami principles to create deployable systems not previously feasible. 
    more » « less
  5. Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the symmetric “bird's foot,” a single vertex with four folds. We show that though even a small error in programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the “Randlett flapping bird,” which has thousands of potential competing states, we further show that the number of actual observed minima is strongly determined by the structure's elasticity. In general, we show that elastic origami with both stiffer folds and less bendable faces self-folds better. 
    more » « less