skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation of Ultrafast Coherence Transfer and Degenerate States with Polarization-Controlled Two-Dimensional Electronic Spectroscopy
Optical spectroscopy is a powerful tool to inter- 7 rogate quantum states of matter. We present simulation results for 8 the cross-polarized two-dimensional electronic spectra of the light- 9 harvesting system LH2 of purple bacteria. We identify a spectral feature on the diagonal, which we assign to ultrafast coherence transfer between degenerate states. The implication for the interpretation of previous experiments on different systems and the potential use of this feature are discussed. In particular, we foresee that this kind of feature will be useful for identifying mixed degenerate states and for identifying the origin of symmetry breaking disorder in systems like LH2. Furthermore, this may help identify both vibrational and electronic states in biological systems such as proteins and solid-state materials such as hybrid perovskites.  more » « less
Award ID(s):
1914608
PAR ID:
10198035
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry B
ISSN:
1520-6106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently-detected counterparts, such as spatially-resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence- detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800-B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently-detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action- detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems. 
    more » « less
  2. An approach for identifying resonances in vibrational perturbation theory calculations is introduced. This approach makes use of the corrections to the wave functions that are obtained from non-degenerate perturbation theory calculations to identify spaces of states that must be treated with degenerate perturbation theory. Pairs of states are considered to be in resonance if the magnitude of expansion coefficients in the corrections to the wave functions in the non-degenerate perturbation theory calculation is greater than a specified threshold, χ max . This approach is applied to calculations of the vibrational spectra of CH 4 , H 2 CO, HNO 3 , and cc-HOONO. The question of how the identified resonances depend on the value of χ max and how the choice of the resonance spaces affects the calculated vibrational spectrum is further explored for H 2 CO. The approach is also compared to the Martin test [J. M. L. Martin et al., J. Chem. Phys. 103, 2589–2602 (1995)] for calculations of the vibrational spectra of H 2 CO and cc-HOONO. 
    more » « less
  3. We propose a generative model-based framework for learning collective variables (CVs) that faithfully capture the individual metastable states of the fulldimensional molecular dynamics (MD) systems. Unlike most existing approaches based on various feature extraction strategies, the new framework transfers the exhausting efforts of feature selection into a generative task of reconstructing the full-dimensional probability density function (PDF) from a set of CVs under a prior distribution with pre-assigned local maxima. By pairing the CVs with a set of auxiliary Gaussian random variables, we seek an invertible mapping that recovers the full-dimensional PDF and meanwhile, preserves the correspondence between the metastable states of the MD space and individual local maxima of the prior distribution. Through identifying the metastable states within MD space that are generally unknown and imposing the correspondence between the two spaces, the constructed CVs retain clear physical interpretations and provide kinetic insight for the molecular systems on the collective scale. We demonstrate the effectiveness of the proposed method with the alanine dipeptide in the aqueous environment. The constructed CVs faithfully capture the essential metastable states of the full MD systems, which show good agreement with kinetic properties such as the transition from the ballistic to the plateau regime for the mean square displacement. 
    more » « less
  4. We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton–vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang–Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton–vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/ e time of 0.5 ps, which is in good agreement with experimental results. 
    more » « less
  5. The catalytic function of Lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported to have intramolecular O2 tunnels, which aid in transporting one of the required co-substrates into the active site. While LH2 can be a promising target to combat these diseases, efficacious inhibitors are still lacking. We have used computational simulations to investigate a series of forty-four small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the existence of several intra-molecular tunnels. The lengths of the calculated O2-transporting tunnels in holoenzymes are relatively longer than the apoenzyme suggesting that the ligands may affect the enzyme's structure and possibly block (at least partially) the tunnels. The sequence alignment analysis between LH enzymes from different organisms shows that all the amino acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results suggest that the enolate form of diketone compounds establishes stronger interactions with the Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl and pyridinyl enhances the interaction with various residues around the active site. Our results provide information about possible leads for further LH2 inhibition design and development. 
    more » « less