skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of LEAP-UCD-2017 CPT Results
A cone penetrometer was specifically designed for the LEAP project to provide an assessment of centrifuge model densities independent from mass and volume measurements. This paper presents the design of the CPT and analyses of the results. Due to uncertainty in the specifications about how to define zero depth of penetration, about 20% of the CPT profiles were corrected to produce more accurate results. The procedure for depth correction is explained. After these corrections, penetration resistances at the representative depths of 1.5, 2, 2.5, and 3 m (prototype depth) are correlated to the reported specimen dry densities by linear regression. Using the inverse form of the linear regression equations, the density of each specimen could be estimated from the penetration resistance. Kutter et al. (LEAP-UCD-2017 comparison of centrifuge test results. In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017, 2019b) found that the density determined from penetration resistance was a more reliable predictor of liquefaction behavior than the reported density itself. Finally, the centrifuge tests at different LEAP facilities modeled the same prototype in different containers using different length scale factors (1/20 to 1/44); thus the ratio of layer thickness to cone diameter was different in each experiment. It appears that the penetration resistances are noticeably affected by container width and, to a lesser extent, resistance is affected by the length scale factor.  more » « less
Award ID(s):
1635307
PAR ID:
10198140
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading
Page Range / eLocation ID:
117-129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cone penetrometers (CPTs) are commonly used for characterising the soil properties of centrifuge models; CPT data is useful for interpretation and quality control. This paper describes the development and design of a new robust CPT device for centrifuge testing. The new device consists of a 6mm cone, an outer sleeve, and an inner rod that transmits cone tip forces to a load cell above the ground surface. The design eliminates the need for a custom submerged strain gauge bridge near the tip, significantly reducing cost.A direct comparison was performed between this CPT device and another similar device developed at the University of Cambridge. CPT’s were manufactured using the new design and then shipped to eight different centrifuge facilities, for quality control of similar experiments performed for LEAP (Liquefaction Experiments and Analysis Projects). All the centrifuge tests simulated a 4 m deep deposit of soil, all consisting of Ottawa F-65 sand with relative densities ranging between about 45 to 80%. The results obtained have been extremely valuable as an independent assessment of the density calculated from mass and volume measurements at different laboratories. 
    more » « less
  2. Three centrifuge experiments were performed at the University of California, Davis, for LEAP-UCD-2017. LEAP is a collaborative effort to assess repeatability of centrifuge test results and to provide data for the validation of numerical models used to predict the effects of liquefaction. The model configuration used the same geometry as the LEAP-GWU-2015 exercise: a submerged slope of Ottawa F-65 sand inclined at 5 degrees in a rigid container. This paper focuses on presenting results from the two destructive ground motions from each of the three centrifuge models. The effect of each destructive ground motion is evaluated by accelerometer recordings, pore pressure response, and lateral deformation of the soil surface. New techniques were implemented for measuring liquefaction-induced lateral deformations using five GoPro cameras and GEO-PIV software. The methods for measuring the achieved density of the as-built model are also discussed. 
    more » « less
  3. This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019) and direct simple shear tests (Bastidas, Ottawa F-65 Sand Characterization. PhD Dissertation, University of California, Davis, 2016) are available for Ottawa F-65 sand. The focus of this element test simulation exercise is to assess the performance of the constitutive models used by participating team in simulating the results of undrained stress-controlled cyclic triaxial tests on Ottawa F-65 sand for three different void ratios (El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019). The simulated stress paths, stress-strain responses, and liquefaction strength curves show that majority of the models used in this exercise are able to provide a reasonably good match to liquefaction strength curves for the highest void ratio (0.585) but the differences between the simulations and experiments become larger for the lower void ratios (0.542 and 0.515). 
    more » « less
  4. A series of centrifuge tests of a sloping ground were conducted at Rensselaer Polytechnic Institute (RPI). These tests were used to monitor and assess the soil response, in terms of generated accelerations, excess pore water pressure (EPWP) and associated lateral spreading, as a function of variations in the dynamic input motion and soil relative density. This series of tests are part of the Liquefaction Experiments and Analysis Projects (LEAP-2017), an international effort to assess the repeatability and reproducibility of centrifuge experimental results, and verify and validate soil liquefaction numerical tools using the experimental data. 
    more » « less
  5. An analysis is conducted to assess the sensitivity of 17 replicas of a saturated sloping deposit tests conducted within the 2017 Liquefaction Experiments and Analysis Projects (LEAP). A difference analysis is first used to quantify the dissimilarities between recorded input acceleration time histories. This analysis provided a unique decomposition of the differences in terms of phase, frequency-shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2+Hz). A kriging analysis was used to evaluate the sensitivity of the deposit response accelerations to differences in input motion amplitude at 1Hz and 2+Hz and cone penetration resistance. The analysis showed a response that is more sensitive to variations in cone penetration resistance values than to amplitude of the input 1Hz and 2+Hz motion (frequency) components. 
    more » « less